Faculty of Electronics and Information Technology
Institute of Electronic Systems

Maciej Lipi Aski

198420

Master Thesis

Universal Measurement System
with Web Interface

Supervisor:
Ph.D. Krzysztof Po Zniak

Warsaw, 2009

Universal Measurement System with Web Interface

Acknowledgements

Multitude of gratitude to Grzegorz Kasprowicz for continuous,
instant and thorough support throughout the project.

Many thanks to Zbigniew Reszela, my colleague at CELLS
synchrotron, for theoretical help in the field of application design and
data structures.

Maciej Lipinski

Universal Measurement System with Web Interface

Abstract

Universal Measurement System with Web Interface

Modern trends in measurement instrument development include miniaturization
and remote control. Remote control interfaces offered by measurement devices
increasingly often include Graphic User Interface(GUI) which reflects the appearance
of local user interface (i.e. screen, buttons). The later is one of the limitations
in miniaturization. More and more often, measurement devices are used only
remotely, in which case, the local interface is unnecessary or even unwanted.
Instruments controlled by remote GUI displayed using a PC or laptop seem to be
a new direction in the development of measurement devices.

Universal Measurement System with Web Interface (UMSWI) was created for
High Energy Physics, i.e. accelerator diagnostics. UMSWI's hardware (commercially
available) is a small, modular, embedded system, designed according to modern
trends. It incorporates powerful microprocessor (capable of running embedded
operating system) and Field Programmable Gate Array (enabling fast, concurrent
data processing). In order to efficiently use the hardware resources and create
a state-of-art measurement instrument, which follows modern trends, a control
system (software and FGPA logic) needed to be created, the creation preceded
by in-depth research of existing solutions and available technologies.

This thesis is a theoretical and practical study of UMSW!I’s control system which
enables to manage the hardware and conduct measurement providing web-based
and Standard Commands for Programmable Instrumentation (SCPI) interfaces.
The project included implementation of simple digital oscilloscope and spectrum
analyzer functionalities and GUIs. The device’s innovative character is determined
by the fact that no dedicated server or client software is required to operate it. Since
the measurement system is simultaneously a server, it can be connected directly
to an intranent, Internet or PC/laptop and accessed using only web browser.

Moreover, the control system, which has been created, enables easy
extensions (i.e. implementation of frequency counter) and the modular hardware
architecture allows to change the quantities measured (i.e. instead of using recorder
module with Analog-to-Digital Converter, a weather station can be installed). Further
more, the control system architecture is platform-independent and the system can be
ported to any microprocessor capable of running Embedded Linux. Such features
highlight system’s universality.

Maciej Lipinski 3

Universal Measurement System with Web Interface

Streszczenie

Uniwersalny System Pomiarowy z Interfejsem Webowym (USPIW)

Znaczenie zdalnego sterowania jest coraz wieksze i permanentnie rozszerza
sie spektrum jego zastosowan. Urzgdzenia pomiarowe w tym wzgledzie nie stanowig
wyjatku. Zdalnie sterowane instrumenty pomiarowe sg coraz bardziej popularne,
a w niektorych sytuacjach niezbedne. Podczas wykonywania pomiarow w miejscach
niebezpiecznych musza by¢ one stosowane. Jednoczesnie wygoda wykonywania
pomiarow z biura lub jakiegokolwiek miejsca na Swiecie staje sie coraz bardziej
atrakcyjna. Wiekszos¢ nowoczesnych instrumentow pomiarowych daje mozliwosé
zdalnej kontroli. Poza standardami stluzacymi do programowania i obstugi
instrumentéw pomiarowych z poziomu aplikacji pomiarowych (LabView), coraz
czesciej zdalna kontrola obejmuje GUI (Graphic User Interface). W tym przypadku
wirtualny interfejs imituje wbudowany panel frontowy urzadzenia (np. e*Scope firmy
Tektronix [7]). Przyrzady pomiarowe podlegajg ciggtej miniaturyzacji. Jednym
z elementébw ograniczajgcych zmniejszenie rozmiaréw jest koniecznosc¢
umieszczenia w urzadzeniu pomiarowym panelu sterujgcego z ekranem. Coraz
czesciej zdarza sie takze, ze przyrzady pomiarowe wykorzystywane sg wylacznie
w trybie zdalnym. Woéwczas wbudowany interfejs lokalny przyrzadu pomiarowego
staje sie niepotrzebny lub wrecz niepozadany, gdyz, po pierwsze utrudnia dalszg
miniaturyzacje urzadzenia i po drugie stanowi niepotrzebny wydatek.

Zdalna kontrola urzgdzen pomiarowych w postaci GUI odzwierciedlajgcego
panel frontowy urzadzenia juz nie tylko stanowi dodatkowg funkcjonalnosé, ale moze
skutecznie konkurowaé z lokalnym interfejsem wbudowanym, a nawet przewyzszac
go mozliwosciami. Pozwala ona na obstuge wielu urzadzeh z jednego stanowiska
(PCllaptop) czy tatwe pozyskiwanie danych pomiarowych do dalszej analizy.
Co wiecej, zawsze istnieje mozliwos¢ wykorzystania interfejsu zdalnego lokalnie
ustawiajgc PC/laptop obok urzgdzenia pomiarowego. Dlatego nhowym i rozwojowym
kierunkiem w dziedzinie takich urzadzeh wydajg sie by¢ przyrzady pozbawione
wbudowanego interfejsu uzytkownika. Urzgdzenia te mogg by¢ atrakcyjne zaréwno
dla uzytkownikbw jak i producentdow, gdyz zmniejszajg koszt produkciji
(brak wyswietlacza, itp.) oraz pozwalajg na wiekszg uniwersalizacje przyrzadow.
Funkcjonalnos¢ urzadzenia jest w duzej mierze zalezna od interfejsu, a jesli ten jest
wirtualny, jego wymiana wymaga jedynie nowego oprogramowania. Urzgdzenia
sterowane wylgcznie za pomocg zdalnego GUI pojawity sie juz na rynku
(np. BitScope [11]).

Uniwersalny System Pomiarowy z Interfejsem Webowym jest urzadzeniem
stworzonym na potrzeby Fizyki Wielkich Energii, m.in. diagnostyki akceleratorowe,;.
Baza sprzetowa instrumentu (dostepna komercyjnie) jest miniaturowym, modularnym
urzadzeniem wbudowanym, ktore zostalo zaprojektowane zgodnie z najnowszymi
trendami. Urzadzenie to tgczy mikroprocesor o duzych mozliwosciach obliczeniowych
z ukfadem logicznym FPGA (Field Programmable Gate Array). Mikroprocesor
(ARM9 [45]) pozwala na uruchomienie systemu operacyjnego, zas FPGA
(ALTERA Cyklon I [21]) umozliwia szybkie, rownolegte przetwarzanie danych. Aby w
peini wykorzystaé mozliwosci sprzetowe tego urzadzenia i stworzy¢ produkt
wpisujacy sie w nowoczesne trendy rozwoju systemow pomiarowych, konieczne byto
wykonanie odpowiedniego systemu sterujgcego (oprogramowanie i ukiad logiczny)

Maciej Lipinski 4

Universal Measurement System with Web Interface

poprzedzone przegladem istniejgcych rozwigzan i mozliwych do wykorzystania
technologii.

Bardzo wazng konkluzjg z przegladu istniejgcych rozwigzan jest fakt,
iz oferowane przez producentéw instrumentow pomiarowych wirtualne zdalne panele
graficzne (GUI) wymagajg instalacji oprogramowania po stronie Kklienta
lub przygotowania dedykowanego serwera z odpowiednim oprogramowaniem
podiaczonego do urzadzenia pomiarowego.

Celem tej pracy bylo wykorzystanie dostepnej komercyjnie bazy sprzetowej
do stworzenia autonomicznego i uniwersalnego systemu pomiarowego ze zdalnym
sterowaniem opartym na interfejsie WWW. Niniejsza praca stanowi opracowanie
teoretyczne i realizacje systemu sterujgcego USPIW. System ten obejmuje logike
do FPGA, Embedded Linux zoptymalizowany i skonfigurowany na potrzeby USPIW,
atakze szereg aplikacji i rozwigzan umozliwiajgcych kontrole urzadzenia
i wykonywanie pomiaréw z poziomu strony WWW oraz wybranego interfejsu
pomiarowego (Standard Commands for Programmable Instrumentation). W ramach
pracy i zgodnie z wymaganiami poczatkowymi, zaimplementowano
GUI i funkcjonalnos¢ umozliwiajgce na wykorzystanie urzadzenia jako prostego
oscyloskopu cyfrowego i analizatora widma.

Podstawg budowy systemu sterujgcego USPIW jest system operacyjny Linux,
co pozwala na uniezaleznienie architektury USPIW od platformy sprzetowej oraz
wykorzystanie istniejgcych rozwigzan czy aplikacji. System sterujgcy USPIW moze
zosta¢ uruchomiony na dowolnym mikroprocesorze, naktérym mozliwe
jest uruchomienie Linux’'a. Linux dla USPIW stworzony zostat w oparciu o jgdro
2.6.19 odpowiednio zmodyfikowane i skonfigurowane. System plikdw
zaimplementowany zostat jako initramfs — wkompilowany w obraz z jadrem,
tadowany do pamieci RAM przy starcie systemu.

Uktad logiczny opisany w jezyku VHDL (Very High Speed Integrated Circuit
hardware description language) i zaimplementowany w FPGA ma dwa zadania:
obstuga komunikacji z mikroprocesorem i zarzadzanie akwizycjg danych. Akwizycja
danych kontrolowana jest przez mikroprocesor przy pomocy szeregu parametrow
zapisywanych w rejestrach kontrolnych FPGA (wykorzystujgc logike obstugujaca
komunikacje). Logika zarzadzajgca akwizycjg na biezaco kontroluje stan rejestrow
ireaguje w odpowiedni sposdb na zmiane ich zawartosci. Komunikacja
w przeciwnym kierunku (logika akwizycji->mikroprocesor) dziala analogicznie.
Rejestry kontrolne umieszczone sg w obszarze adresowym mikroprocesora. Podczas
akwizycji danych wartosci napiecia odczytane z przetwornikéw analogowo-cyfrowych
zapisywane sg w pamieci SSRAM (Synchronous Static Random Access Memory).
Po zakonczeniu akwizycji nastepuje odczyt danych z SSRAM do mikroprocesora,
przestanie do klienta i przetworzenie do formy graficznej.

Komunikacja z FPGA po stronie mikroprocesora i systemu operacyjnego
zapewniona jest przez stworzony do tego celu sterownik do Linux’a (Linux Device
Driver). Sterownik ten pozwala na komunikacje z logikg zaimplementowang w FPGA
na réznych poziomach abstrakcji (ogoélny, wyspecjalizowany) i roznymi metodami
(przez ioctl lub system plikéw /proc).

Urzadzenie obstugiwane jest z poziomu strony WWW. Gtéwnymi jej skladnikami
sa: Interfejs Oscyloskopu i Analizatora Widma oraz Interfejs Zarzadzania
Urzadzeniem. Strona WWW Uniwersalnego Systemu Pomiarowego z Interfejsem
Webowym dostarcza dodatkowo krotkg informacje o projekcie, instrukcje obstugi,
oraz przyktady zastosowan (skrypty Matlab). Bardzo wazng kwestig podczas pracy
nad projektem byt wybor odpowiednich technologii do stworzenia Interfejsu

Maciej Lipinski 5

Universal Measurement System with Web Interface

Oscyloskopu i Analizatora Widma. Sposréd wielu mozliwosci rozwigzania tego
zadania i technologii mozliwych do zastosowania w jego realizacji, wybrano
implementacje GUI jako Apletu Java’owego. Komunikacja apletu ze sterownikiem
Linuxowym, a w konsekwencji z logikg FPGA, odbywa sie z wykorzystaniem
Common Gate Interface (CGI). Zastosowanie Apletu Java’owego, ktory wykonywany
jest w przeglagdarce na komputerze klienta oraz CGIl pozwolito na przeniesienie
wymagan na moc obliczeniowg z ograniczonego w zasobach mikroprocesora USPIW
na komputer klienta. Takie zadania jak generacja grafiki, interakcja z uzytkownikiem,
przechowywanie danych pomiarowych odbywajg sie po stronie klienta, nie obcigzajg
USPIW i redukujg ilo$¢ przesytanych informacji miedzy serwerem (znajdujacym sie
w USPIW) i Kklientem. Architektura Apletu Java’owego oparta jest o wzor
Model-View-Controller (MVC) [61], ktory umozliwia dokonywanie zmian w kazdym
z trzech komponentéw architektury (modelu danych, interfejsie uzytkownika, logice
sterowania) niezaleznie. Sprawia to, iz aplet moze zostac tatwo rozszerzony o nowe
funkcje lub wykorzystany do implementacji catkiem nowych zadan.

Interfejs Zarzadzania Urzadzeniem wykorzystuje CGI do wywotywania funkciji
systemowych lub uruchamiania aplikacji oraz Java Script do weryfikacji danych
wejsciowych.

Zastosowane technologie oraz fakt, iz urzadzenie pomiarowe jest jednoczesnie
serwerem, pozwolity uwolni¢ uzytkownika od koniecznosci instalowania
dedykowanego oprogramowania lub stosowania specjalnego serwera podtgczonego
do urzadzenia. Uzytkownikowi nie potrzebne sg specjalne uprawnienia,
aby obstugiwa¢ USPIW. Pod tym wzgledem stworzony system wyprzedza oferowane
komercyjnie rozwigzania i moze by¢ nazwany innowacyjnym

Aby USPIW mogt zosta¢ zintegrowany w wiekszym systemie pomiarowym
lub by¢ obstugiwany przez aplikacje pomiarowe (np. w celu zaprogramowania
przebiegu pomiaru), zaimplementowano Interfejs do Zdalnych Pomiarow. Istnieje
wiele standardoéw pozwalajgcych na realizacje tego zadania. Bardzo powszechnym
i czesto stosowanym jest Standard Commands For Programmable Instruments
(SCPI) [57]. Standard ten okresla skiadnie i strukture polecen do kontroli
programowalnych instrumentéw pomiarowych. W USPIW zaimplementowany zostat
jako serwer socket’'owy. Sklada sie on z interfejsu uzytkownika, analizatora sktadni,
dekodera polecen, interfejsu ze sterownikiem oraz systemu zapisywania informacji
o pracy serwera (logowanie). Wdrozony serwer realizuje prosty stownik polecen
dla oscyloskopu. Budowa Serwera SCPI pozwala na jego tatwe rozszerzenie o nowe
funkcje. Interfejs przetestowany zostat przy pomocy aplikacji Matlab. Odpowiednie
skrypty uzyte w tym celu i pozwalajgce na potgczenie sie z USPIW
oraz przeprowadzenie pomiarow dostepne sg na stronie USPIW.

Dzieki innowacyjnej budowie i architekturze systemu, do jego obstugi
niepotrzebny jest dedykowany serwer (np. w postaci komputera PC), ani specjalne
oprogramowanie klienckie. Urzadzenie moze zosta¢ podigczone bezposrednio
do intranetu, Internetu lub komputera osobistego. Zwykta przegladarka internetowa
umozliwia bezposredni dostep do wbudowanego interfejsu WWW, ktory pozwala
na zarzadzenia urzgdzeniem i przeprowadzanie pomiaréw. Stworzony system
sterujgcy USPIW daje mozliwos¢ tatwego rozszerzenie funkcjonalnosci urzadzenia
(np. o funkcjonalnos¢ czestosciomierza). Architektura GUI (Aplet Java’owy) pozwala
na tatwe dodawanie nowych paneli kontrolnych przy wykorzystaniu uniwersalnych
metod komunikacji ze sprzetem. Modularna budowa bazy sprzetowej umozliwia
zmiane mierzonych wartoéci. Mozna zamontowac, np. stacje meteorologiczna,
zamiast modutu z przetwornikami analogowo-cyfrowymi, a nastepnie wykorzystac

Maciej Lipinski 6

Universal Measurement System with Web Interface

istniejace rozwigzania do stworzenia odpowiedniego interfejsu. Co wiecej,
architektura i rozwigzania zastosowane w USPIW sg niezalezne od platformy
sprzetowej. Dzieki temu moga stanowi¢ podstawe do stworzenia interfejsu
sterujgcego dla dowolnego urzadzenia (jesli mikroprocesor pozwala na uruchomienie
Linux’a), ktére ma by¢ zarzgdzane zdalnie za pomocg potgczenia Ethernet.

System spenit wszystkie wymagania poczatkowe, a nawet przewyzszyt je pod
wzgledem uniwersalnosci. Pomysinie przeszedt on testy w warunkach
laboratoryjnych, a nastepnie zostat wykorzystany do pomiaréw w Europejskiej
Organizacji Badan Jadrowych (CERN). Pomiary przeprowadzone zostaly
w akceleratorze PS (Proton Synchrotron). Obejmowaly analize ksztattu i widma
sygnatu elektrycznego z czujnikbw pomiarowych detektujgcych przyspieszane
protony.

Maciej Lipinski 7

Universal Measurement System with Web Interface

Table of Contents

ot T 1V =T [o =T o g 1= £ 2
AADSTTACT .. e 3
Y LTSy {074 =] o1 UUPPPPPPPRRP 4
Table Of CONTENTS ... s 8
N [o1 oo 18 od 1 o] o H PP PPPPPPPPPPP 11
1.1 Remote control of measurement iINSIrIUMENTS.......... coooiiiiiiiii e 12
1.2 Web User Interface to control hardware oo 12
1.3 Examples of commercially available solutions oo 13
R T 1= 1 o]) G 13

I 0 o 111 o | 14

I T = 1 o o] o1 15

1.4 Hardware solutions for measurement SYStEMS......... ceeeiiiieeiieeeicee e 15
1.5 Universal Measurement System with Web Interface (UM~ SWI)cccciiiiinnnnns 16
1.5.1 UMSWI hardware architecture and dataflowcccccoeiii, 17

1.5.2 Embedded Operating SYStEMccooiiiiiiiiiiie e 18

1.6 The Thesis Project Genesis and ObJeCtVe coooiiiiiiiiiiieeeee e 18
R =T o 111 £=] 41T £ 18

2. AFCRITECIUIE . re ettt e e e e e e e e et e e e e e eeaenne 20
2.1 Embedded Operating SYStEM — LiNUX.....ccvviiiiiiiis coeeieeeeeeeee e 21
2.1.1 Embedded Linux System for UMSWIccoooriiiiiiiiieee e 21

P A = = €7 N [To | o 22
2.3 Hardware-software communication layerccc. oiiiiire i 24
2.3.1 FPGA CONfIQUIALION.....ccciiiiiii i e e e e e e e e 24

2.3.2 Communication between ARM and FPGA ... 24

2.4 WeD USEI INEITACE ... e e e e e 25
2.4.1 Oscilloscope and Spectrum ANAIYZEr.........ccovveviiiiiiii e e 25
2.4.1.1Java AppPlet arChit@CIUIe.........cooe e 27

2.4.2 UMSWI Management INterfacecceeeiiiieiiiiiiiiee e 28

2.5 Remote Measurement INTEIaCEot e 29
2.5.1 A Note 0n SCPI COMPIENCE.......eiiiiiiiieiiiieieieeeeeeee ettt eeeeees 31

2.6 SUIMIMAIY ..ooiiieiiiieeii et ee teeeerr e e e e et e e e e s e e e e e e e e e e s rrrrrn e e e e e e e nrnnn e e s 31

3. Design and Implementationccccoiiiiiiiiiis ceviiiiiee e 33
3.1 Development ENVIFONMENT.........oviiiiiii s e e e e e e s 33
3.2 Embedded Linux Operating SYSIEM..........cciiiiiiis erreeeiiiieeieeeeeee e eeeeeeeeeee e eeeeeees 35

I 77 A O] o] 1= o £SO 35
3.2.2 CONFIQUIALIONuiiiiiiiiiiiiiiii e snnnnnnne 36
3.2.3 System boot and STArtUPooveiiiiii e 37

Maciej Lipinski 8

Universal Measurement System with Web Interface

3.2.4 UMSWI utilities organizationcccooeeeiiieeuiiiiii e e e e e e eaans 40
3.3 Implementation of the FPGA0gIiC iN VHDL coeeiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeee 40
3.3.1 ComMMUNICALION [OQIC.uuuuiuuiiiiiiiiiiiiiiie e eennnnnes 41
3.3.2 Acquisition Management LOGICovieieiiiieeiiiie e 45

1 J0C T0C T I o To 1T e (= (= Tox 1o o PPN 48
3.4 LINUX DEVICE DIIVET .ccciiiiiiiiiiiieett e 49
R N R AN o 1] = (o B =Y PPN 50

R 0 N 0 I 1= o1 T [[o PPN 52
3.4.1.2/Pr0OC fll@SYSTEIM ...ttt 53
R I T o 58
3.4.2 PhYSICAl JAYEIo aaan 62
3.5 Binding Web Interface to Device Driver with CGl.... cccciiiiiiiiiiiiic e, 64
3.6 WD INEIMACE ... e e 65
3.6.1 Oscilloscope and Spectrum Analyzer GUIccoooeeiiiiiiiiiie e, 66
BuB. L. L IMOAEL. ... s 67

G LG Y 1 P 71
3.6, 1.3 CONLIOIIEY ...ttt nnnnnnn e 73
3.6.2 UMSWI management and configuration..............ccccoooommmmnmnnies 74
3.7 Measurement INEITACE........ooi it e 75
A T U 1T 1 (=T = Vo 76
T e (=T 01 14 =T PPN 76
BuT.3 PAISEI e et aeaeeae 76
3.7.4 COMMANUS UECOUETuuuuuuuiiiitiiiiiittttbbbbbb bbb eeseeeseesseeees 77
3.7.5 COMMANA JOGIC.....uuuuiiiiiiiiiiiiiiiee e 78
3.7.6 Hardware INTEITACE.uuuuuiiiiiiiiiiiiiiii bbb s e eesesaneene 79
3.7.7 Logfile INtEIfACEceeviiii i e 79
A S T b (= o {1 1 1 7R 80

2 =X 1 T PRSP 82
o R B 1= V=1 (o] o1 0 =T gL B (ST PP PP 82
4.1.1 Embedded Linux Operating SYSTEM ... 82
4.1.2 LINUX DEVICE DIIVETuuuuiiiiiiiiiiiiiiiiiiiiietitiiiiis bbb ass s ses s esesesnnnnnes 82
G T o o €7 Ao [T 018 o o 1T RSN 83

4. 1.4 APPIEE EESES ...ttt 84
4.1.5 SCPI SEIVEI TESES ...ciiiiiiii i ettt ettt e e e e e e et e e eeeee 84
A T = LN (= £ 85
N R I =T =] | o PPN 85
4.2.2 Vertical axiS MEASUIEIMEINTSuuuuuuuuurrieiriiitiiiiieieieeeeaeeeeeeeeeeeeaee e 86
4.2.3 Horizontal axiS MeEaSUMEMIENTSuuuuuuuiiiiiiiii e 89
VN S (= To [T=T 0 To VA0 (o] 0 - o IR 90
4.2.5 Boundary CONItIONS tESEScccvviiiiiiii e e e e e e aans 92
4.2.5. L HArOWAIE-WISEuuuuuuuiiiiitiiiiuiiititatbbbbbb bbb bbb s s ss s s s s e s sesnssnnnnnes 92
4.2.5.2 SOFWAIE-WISEciieeiiiiiie e e et eee et e e e e ettt e e e e e et eeeatan e e e e e e eeeeeannnn e aeaeeeeeees 93
4.2.6 UMSWI PArGMELEIS ...covuiiiiiiii it e et e et e e e e e e e e e s e e e et eeaeat e e e e eaannaeees 93

5. System APPlICALIONSccveiiiiiiiie s aeee e e e e e e e e e e e 94
5.1 European Organization for Nuclear Research (CERN)..cccccoeiiiiiiiiiiiiiiiieennn. 94

Maciej Lipinski 9

Universal Measurement System with Web Interface

5.2 Potential appliCatIONS.ccoo e s 96

G O] o o4 [1 13 (o] 1P PP PPPPPPPPPPPPP 98
Appendix A — Additional INfOrmation..........cccce. oo 99
1. UMSWI hardware analySiS........cccoviiiiiiiiiiiiies cvieeeeeeeeeiiiiis s e e e e e e e e e 99
1.1 Data acquisition hardware arChiteCture cooiriiiiiiii e 99

2. Review of available technologiescccceeies i 100
2.1 Embedded Operating SYSIEIMSuiiiiiiiiiiiis ceeeeeeeee e 100
2.2 Remote Measurement INTEIfaceS. ... coeiieii 100
2.2 1 PRYSICAI AYEIo 101

WA A A\ o 11 - Lox -\ 101

2.3 Web technologies to control hardwarec.. oo 102
2.4 Web Graphic User INterfaces.......ccoveeiiiiiiiics oo 104
2.5 WD SEIVEIS ...ttt ceee e e e e e et e aaaeaeeaeees 104

3. Descriptions of choSen SOIULIONS.......cccoiiieiiis e 104
3.1 General architecture of embedded LiNUX............. coooiiiiiiiiiiiiiiieee e 104
3.2 Model-View-Controller (MVC) design patternoooeevieimreeieeeieeeeeeeeeeeeeeeeeeeeee 106
3.3 Observer-Observable paradigmcccccciiis eeviiiiiiieieie e 107
3.4 Standard Commands for Programmable Instruments (SCP D......ccoovvviiviinnnnnnn. 107

4. Parameters of digital 0SCIlIOSCOPEcccvvviies i 109
Appendix B — FPGA — ARM INterface........ccccccvies i 111
Appendix C — Example Manual...........ccooiiiiiiiis aieiiiiiiiiee e 114
Appendix D — Developer's Web Pagecccvvvvis eeviiiii e 118
Appendix D — Additional Materials on the Accompanyi NgCDoovvveeeee 123
AppeNndix E — LISt Of FIQUIEScooiiiiiiiiiiies et 124
Appendix F — List Of TADIESccoviiiiiiiiiies e 127

Maciej Lipinski 10

Universal Measurement System with Web Interface

1. Introduction

The significance of remote control is increasing in the entire spectrum of applications,
measurement is not an exception. Remotely controlled measurement instruments are both
popular and needed. When acquisition is made in a dangerous place, remote control
is necessary. However, the convenience of performing measurement from the office or any
location in the world is becoming increasingly important and appealing nowadays. That
is why most of the vendors of measurement equipment offer their instruments with remote
control. It is a standard for good and expensive measurement devices, i.e. oscilloscopes,
to offer control via USB, Ethernet, GPIB, etc. Such devices can be remotely controlled using
measurement applications, special software provided by the vendors or web interface.
Remote control interfaces provide functionality at least equal to the functionality of local
interfaces.

In the measurement devices (in principle, any device) which are used only-remotely,
local interface (i.e. buttons, screen, knobs) can introduce unnecessary overheads in size and
costs. On the other hand, measurement devices which are used “on the spot”, can be
controlled through remote interface as well. What is more, using remote interface locally can
be preferred since it provides more functionality and enables to control many measurement
device using single PC/laptop.

It my lead to a conclusion that nowadays, remote interface can become a substitute
or competition for local interface. It seems that remote control has many advantages over
traditional control. It allows management of many instruments from one station (PC, laptop),
i.e. using single application (LabView, Matlab). It also enables to easily export data for further
analysis. The costs of production and development can be significantly reduced
by eliminating local interface. It can also remove minimal size constraints resulting
in significant size reduction, since there is no need to place screen, buttons, etc on the
device. Importantly, such devices (without local interface) do not lack any of the functionality
of standard instruments. In contrary, they are much more functional than devices with only
local interface.

Elimination of local interface can be also advantageous for equipment vendors. User
interface of only-remotely controlled devices can be easily changed by upgrading
the firmware. This is a great asset. One of the factors which determines application of
a device is it's user interface. The possibility to easily change interface enables device to be
universal within hardware limitations.

Maciej Lipinski 11

Universal Measurement System with Web Interface

1.1 Remote control of measurement instruments

There are many ways a measurement device can be controlled remotely. In principle,
the solutions are divided according to the medium of communication and the software
interface. A detailed description is provided in Appendix A: 2.2 . Among 7 most commonly
implemented mediums of communication in measurement devices (GPIB, R-232, VXI,LXI,
PXl, USB and Ethernet)), USB and Ethernet connections are becoming increasingly
important. The software interfaces are divided into two categories.

First category (i.e. VISA, SICL, VXI-11) enables to program measurement devices
and control then from measurement applications (i.e. LabView, Matlab). It is available via
most of the mediums of communication and is implemented in most of the measurement
devices.

Second category provides control with Graphic User Interface (GUI) which is meant
to resemble local interface. It is a new trend among measurement instruments vendors
to provide such interface. Only USB or/and Ethernet links are used in this category. The GUIs
are either implemented as stand-alone applications which connect with the device over
USB/Ethernet or Web User Interfaces which use browsers and Ethernet connection to control
measurement instruments.

Web-based remote control via Ethernet seems especially attractive because it does not
require installation of any special software. Ethernet card and web browser are enough
to operate the device. This requirement is met by the majority of standard PCs, laptops and
some models of mobile phones. It also enables the measurement instrument, without
additional efforts (i.e. special server), to be connected to the Internet and controlled from any
place in the World (unlike USB based control).

1.2 Web User Interface to control hardware

Web-based remote control of measurement instruments via Ethernet is an example
of Web User Interface which enables to control hardware. This form of hardware control
is increasingly popular not only among measurement devices.

User Interface (Ul), in computing, is defined as a set of means which allow interaction
(mutual exchange of information) between the user and the system (i.e. application).
If the mean of interaction is a web page which is transmitted via the Internet (Ethernet
connection) from the system (web server) to the user (web client) who views it using web
browser, the Ul is referred to as Web User Interface (WUI).

The rapid increase of Internet’s popularity resulted in widespread usage of Web User
Interfaces in new range of applications. The greatest advantage of Web User Interface is
the fact that its only hardware (Ethernet card) and software (web browser) requirements are
met by overwhelming majority of modern PCs and laptops. One of the applications of WUI
is online control of hardware. Web User Interface to control hardware is a web page which
directly reflects state of the hardware and enables the user (client) to alter this state. One
of the examples of WUI which controls hardware is the administrator's control web page
of routers such as LinkSys [1] or Livebox [2]. Nowadays, web-based control of hardware
finds increasing number of applications in the fallowing fields:

« Intelligent buildings - WUI enables to access intelligent building’s control panel
and manage it from any location in the World (i.e. office),

Maciej Lipinski 12

Universal Measurement System with Web Interface

* Measurement device control — WUI, which resembles the instrument, enables
to perform measurement remotely, or view measurement results by many research
teams spread around the World

e Internet remote laboratories — WUl enables to perform experiments
and measurements remotely using laboratory sets,

Web User Interfaces can range from very simple HTML pages which are controlled
by clicking appropriate hyperlinks or inputting values into forms, to sophisticated web
applications which provide Graphics Interface (i.e. resembles actual device being controlled).
A detailed description of various technologies which enable web client to interact with
hardware is enclosed in Appendix A: 2.3 . What distinguishes such a technology
is the possibility to make system calls, start/stop applications or read/write files on server
side (which are the means to control hardware) as a consequence of web client’s request.
Since web server is the recipient of web client’s requests, it needs to be able to perform such
actions. Most servers, if not all, embed Common Gate Interface (CGI)[3]. It is an old
mechanism which enables the server to execute scripts (shell, Perl, Python, etc) or even
applications. Such scripts or applications can, in turn, access and control hardware. A newer
technology which enables hardware control, by providing file access and special functions
to run shell commands, is PHP [4]. PHP is a server-side scripting language which produces
dynamic web pages. It requires a PHP parser installed along with the web server. There
is a number of other technologies which enable to access hardware. The more sophisticated
technology (Java Servlets, ASP.NET) the more requirements needs to be satisfied by
the server. Very often the web server is embedded in the device which is being controlled.
It means that the server is run on an embedded system with limited resources which does
not allow to use sophisticated technologies. An example of such device is a measurement
instruments which provides web-based control.

1.3 Examples of commercially available solutions

Among few commercially available solutions which enable web-based control
of measurement instruments, most is based on web servers embedded into the devices.
A background research of commercially available Web User Interfaces for measurement
instruments revealed that the number of such solutions is not great.

1.3.1 Tektronix

Two implementations of remote control over Ethernet are offered by the Tektronix
measurement instruments. First solution uses special application, available for Windows
operating system, which needs to be installed on a PC. It is described in [5] application note
for TG700 Tektronix device. The Tektronix’s application connects to measurement
instrument in order to send commands and retrieve data.

e*Scope is the second remote control GUI provided by Tektronix. It is a web-based
interface which provides access to all front panel oscilloscope’s controls and presents
a faithful reproduction of the oscilloscope screen. Tektronix website [6] states that:

“With the new e*Scope web based remote control feature,
acommon network browser, and Internet connection,
the engineer in Beijing can see exactly what the designer
in Berlin is seeing on the TDS3000B screen-at the same time.”

Maciej Lipinski 13

Universal Measurement System with Web Interface

e*Scope, described in [7], operates in two modes: basic and advanced. The basic
mode is available directly after connecting a PC with LAN cable to Tektronix instrument.
The e*Scope home page, which is housed in the device, enables the user to control
oscilloscope by typing in commands. To run the advance mode, a special website provided
by Tektronix [8] needs to be accessed or a “e*Scope Software” needs to be downloaded
(to avoid connecting to Tektronix web page). The advanced mode enables user to control
oscilloscope through graphic user interface (Figure 2).

‘Waveform transfer from the instrument:
Sourre [CAT =] Famat [INTERNMAL = 6
Waveform transfer toth
Destination: [REF1 =] File Mame: [Browsc... | Pt

setup transfer from the i S|
Instrument setup transfer to the instrument:
File Marme: | Browse... |
TalkiListen: Sené remicts intetface commands to, and receive data flo tie instrumsn:
Command: [olzsmmen Seid
Response.
[H

sample
e
Figure 1 e*Scope basic mode Figure 2 e*Scope advanced mode
igure op ic mo igu ope advanced mo

An investigation of “e*Scope Software”, which is available for download from Tektronix
web page, enabled to learn the technology and design of e*Scope solution. It uses
JavaScript to send commands to the instrument and retrieve screen views. A screen view is
generated in the Tektronix device and send to the browser as an image in .png format.
“e*Scope Software” turned out to be a simple JavaScript.

1.3.2 Agilent

BenchLink Web Remote Control [9] is a software that provides remote control for
Agilent’'s spectrum analyzers. The software is installed on a local server computer which is
connected to the instrument via GPIB or LAN interface (Figure 3). Multiple users can access
the analyzer simultaneously from the intranet or Internet. The server requirements include:
Windows XP, 100MB free disk space, PCI expansion for PCI-GPIB card or PCMCIA in case
of using laptop or configuration to run a LAN-GPIB gateway. Only Web browser is required
from the client to operate the analyzer. The software can be tested on Agilent web site [10]
which provides a limited-features simulation of spectrum analyzer Figure 4).

gy VT LM DUINTEE ESA-Series Spectrum Analyzer (Simulated)
Remote control for spectrum analyzer over the Internet or Intranet

on. Please read the notes below the applet.

Internet

/ or
3 %%/@ \\;Ilntranet .
g : \\GPIB or LAN
N
Server g)
Sbeclrum analvz;
Figure 3 Remote control of Agilent Analyzer Figure 4 BenchLink applet

Maciej Lipinski 14

Universal Measurement System with Web Interface

1.3.3 BitScope

BitScope is the only commercially available product found by the author’, which offers

only remote interface. BitScopes can be controlled via Ethernet or/fand USB (depending on
the model). BitScopes are Mixed Signal Oscilloscopes, which means that they capture and
display one, two or four analog signals and eight logic or timing signals, simultaneously.
Regardless of the connection type, BitScope products are controlled by BitScope DSO
Virtual Instrument Application which needs to be installed on a PC. It integrates Digital
Storage Oscilloscope, Mixed Signal Oscilloscope, Spectrum Analyzer, Logic Analyzer, Data
recorder and Networking. The software is available for Windows and Linux workstations.
BitScope Model 100 is presented in
Figure 5. This model is USB-controlled. It is the only BitScope model which is “user
programmable and software extendable”[11] which is possible though BitLib Application
Programming Library. The library can be used with “several different programming languages
and numeric analysis environments”[11]. It can be used to operate BitScope from MatLab
or LabView as well as for writing applications with Visual Studio or Borland Delphi.
Figure 6 provides an insight into BitScope Model 100 architecture and the manual
of BitScope Model 50 [12] provides details of BitScope’s hardware. It is controlled by PIC
microcontroller (PIC16F877) and uses Complex Programmable Logic Device (M4A5-
TQFP44). 8bit Analog-to-Digital Converters are used enabling 100MHz bandwidth
and 2mV~40mV analogue sensitivity.

USB BitScope 100 12V External Power

Analog Input CHA

Analog Tnput CHB
or Biten Output

E--. . L / cn;:‘iﬂtép’;m
Bl 2 ~ - = clik"ﬁ:dé::mm /
%"ﬁ = (rw e) External Trigger Fmarieil LogieuLop s W?::onr:?nd
L < — | BlTSCﬂ?E| oo s Wl Timing Gepereter
Figure 5 BitScope instrument and GUI Figure 6 BitScope Model 100 architecture

1.4 Hardware solutions for measurement systems

The multitude of features, remote measurement interfaces, sophisticated local
interfaces (i.e. touch-screens) or the ability to be controlled only remotely result in excessive
hardware requirements towards modern measurement systems. In particular, nowadays
most (if not all) measurement instruments include microprocessors which control virtually
every circuit in the measurement devices. Since modern microprocessors can be very
powerful (i.e. PowerPC [13], ARM [14]) and the requirements on instrument’s features are
increasingly demanding, more and more measurement instruments employ embedded
operating systems (in case of less sophisticated and cheaper devices) or even normal
operating systems (very sophisticated and expensive, i.e. Agilent Infiniium Oscilloscopes [15]
work on Windows XP Pro). Such solution allows for great flexibility.

" The author cannot guarantee that there is no other similar product on the market

Maciej Lipinski 15

Universal Measurement System with Web Interface

On the other hand, the example of BitScope (1.3.3) shows a tendency of using
programmable logics in measurement devices. Complex Programmable Logic Devices
(CPLDs) as well as Field Programmable Gate Arrays (FPGAS) are used for signal processing
(i,e. FFT) and other operations where massive parallelism is needed. Such tasks are
performed much faster in FPGAs or CPLDs than in microprocessors. It reflects a general
recent trend in electronic device development to combine the logic blocks
and interconnections of traditional FPGAs with embedded microprocessors and related
peripherals. FPGA is especially popular in custom-made or low-volume systems, since it is
re-programmable providing easy bugs fixing and short time to market. Among providers
of CPLDs and FPGAs are Altera [16], Xilinx [17], ATMEL [18] or Lattice Semiconductors
[19].

1.5 Universal Measurement System with Web Interface (UMSWI)

Responding to a demand from European Organization for Nuclear Research (CERN),
Creotech Ltd.[20] high-tech company produced a prototype of modular embedded
measurement device. In the configuration provided, it is an ARM based microcomputer with
data acquisition daughterboard. It consists of 3 modules: main board, ARM computer and
recorder. The most important parameters and features of the hardware are presented
in Table 1.

Module Module , Size
. Module’s components
name application [mm]
Main Hosts power | Switched-mode Power | 100x80
board supply, Supply
peripherals | Graphic controller
and other Sound controller
modules 12C interface
Peripherals: USB,
RS232, Ethernet, output
for built-in LCD-TFT and
for VGA monitor
ARMputer | Single Processor: ARMS9 | 60x70
Board (AT91RM9200) [45]
Computer 128MB SDRAM
Ethernet interface 10/100
Mbit
FLASH 8MB
SD/MMC reader,
Interfaces: 2 x Serial
ports, 2x USB hub and
device
Recorder Acquisition | ALTERA Cyclone | FPGA | 100x80
[21]
2 x fast, 105MS/s. 10 bit
ADCs [22]
SSRAM - 128K x 32 b
[23]

Maciej Lipinski

Table 1 Hardware components of UMSWI

16

Universal Measurement System with Web Interface

The device is meant to be a measurement instrument for High Energy Physics
i.e. used in accelerators for diagnostics. However, the number of possible application is far
greater, alternatively UMSWI can be used for data acquisition in any dangerous or hard-to-
reach place, as a remote monitoring system of industrial parameters, reconfigurable
measurement system or an element of distributed measurement system .

In such places as accelerators, measurements are done remotely due to the possible
radiation danger. Once settled in the measurement location, the instrument is operated from
a safe place. Therefore, development of a control system which enables remote
management of the device and remote data acquisition was necessary. The device is
equipped with Ethernet peripheral to enable remote control via Ethernet connection. Since
Web User Interface (1.1) seems to be the new trend in measurement instruments’ remote
control, which demands the least requirements on the client and is a very flexible solution,
it was decided that such interface should be developed. Remote control using Web User
Interface is especially suitable for operation at CERN, since it does not require dedicated
client software. Due to the fact that four different operating system platforms are used at
CERN (Linux, Windows, Mac and UNIX), it would be very time-consuming and expensive to
create client’s software for each of them. Web User Interface is client’s platfrom-independant.

In order to enable UMSWI to be apart of a larger system (i.e. Tango [24]
or EPICS [25]) or to take part in experiments where measurement instruments are
controlled with applications such as LabView or MatLab, more “traditional” control is needed,
therefore Remote Measurement Interface (1.1, first category) was required to be
implemented.

The author was given an opportunity to choose and adapt embedded operating
system, develop a prototype control software, FPGA logic and interfaces for the provided
hardware.

1.5.1 UMSWI hardware architecture and dataflow

Design and development of control system for hardware requires thorough
understanding of architecture, data flow and limitations of the provided hardware. Figure 7
presents general overview of UMSW!I's architecture and dataflow.

Universal Internet Measurement System
with Web Interface for High Energy Physics

Single Board
Computer

Main Module

| Remote Control Ethernet

Graphic

| External monitor | Acquisition
module

FPGA |

\ J

I
|
| LCD
I

Signal Source Signal Source

Figure 7 UMSW!I architecture and dataflow

Maciej Lipinski 17

Universal Measurement System with Web Interface

The acquired signal is converted by 10 bits Analog-to-digital Converters (ADCs) and
saved into Synchronous Static Random Access Memory (SSRAM). The acquisition
is controlled by the Field Programmable Gate Array (FPGA). Alternatively, instead of saving
data in SSRAM, it can be directly read by FPGA, computed and later saved in SSRAM. It is
also possible to save data in SSRAM and read in FPGA simultaneously. Once the acquisition
has finished, data can be read by the processor. Readout process is managed by FPGA and
controlled by microprocessor. Data processing can be performed in FPGA logic as well as in
application running on microprocessor. From the processor data is transported to the user by
the Ethernet or can be displayed locally on LCD/VGA monitor.

Hardware Architecture of acquisition module is described in details in Appendix A: 2.1 .
It was particularly important to familiarize with acquisition module, since its layout has
the greatest influence on architecture and design of UMSWI control system.

1.5.2 Embedded Operating System

The UMSWI was intentionally provided with a powerful ARM9 microprocessor
to enable usage of embedded operation system. In fact, the microprocessor (AT91RM92000)
is very popular among embedded systems. It is, of course, possible to develop applications
directly for this processor. However, much better and more popular solution is running
embedded operating system. It makes the system flexible and allows re-use or adaptation
of already existing solutions. A review of embedded operating systems and general
description of Embedded Linux architecture (Linux was chosen to be the operating system
on UMSWI) is provided in Appendix A: 2.1 and 3.1

1.6 The Thesis Project Genesis and Objective

Following a demand by High Energy Physics for a small remotely controlled diagnostic
measurement device to be used in accelerator tunnels, UMSWI hardware was created.
The hardware was designed following modern trends in measurement instrument
development and having in mind broader applications (than accelerator diagnostics). Such
universal and trendy hardware needed equally featured control system' which could not be
provided by CreotechLtd. The UMSWI control system’s development required to
be preceded by research to establish current trends, tendencies and technological
possibilities in the field - a task in line with interests, knowledge and experience of the author
who decided to take this challenge, thus this Master Thesis project was started.

The goal of this Master Thesis is the utilization of commercially available hardware
(Creotech Ltd.) to create an autonomous, universal measurement system with remote
Web-based control.

1.7 Requirements

An employee of European Organization for Nuclear Research (CERN), who has
experience in the area of exploitation and usage of commercial measurement instruments,
presented demand for a measurement device with the following interfaces:

« Web User Interface (WUI) —providing web-based Graphic User Interface to enable
the user to remotely control UMSWI, perform data acquisition and display acquired
data in graphical form.

" A collective of systems, applications, interfaces, etc. that were designed and developed by the author
is called in this thesis control system of UMSWI .

Maciej Lipinski 18

Universal Measurement System with Web Interface

* Remote Measurement Interface (RMI) — implementation of one of the standard
measurement protocols to allow remote control from measurement applications level
(i.e. Matlab, LabView)
The device was required to enable functionality of simple digital oscilloscope and spectrum
analyzer with further possibility of other measurement system implementations.

Instalation of a reasonably powerful microprocessor in the provided device was
intended for usage of embedded operating system, therefore an operating system should be
chosen and developed.

The main limitations to this project were imposed by the provided hardware.
The following measurement system features were determined:

e Signal source — two digital ADCs determines number and type of signal source

e Sampling speed — determined by the speed of ADCs:100MHz

* Sample maximal length — determined by the SSRAM memory size (128k of samples)
* Communication: Ethernet, USB, RS-232

Maciej Lipinski 19

Universal Measurement System with Web Interface

2. Architecture

The architecture of UMSWI's control system was created dividing the system into
the following components
e Operating system
* FPGA logic
* Web User Interface (WUI)
* Remote Measurement Interface (RMI)
« Connotation between Remote Interfaces and FPGA logic
The division was determined by hardware architecture (1.5.1), requirements (1.7)
and technologies (Appendix A: 2) needed to develop each part of the system. General
architecture of entire system was created before design and implementation of component

(Figure 8) .
_________________ |
] |
| N Remote |
| <O |
Measurement Web PC
I
| Application Client |
______ e
:_ I ETHERNET/USB/RS-232 | | ETHERNET | I
& I
: 3 i Remote t |
T W
I T o measurement || Veb ARM |
| 3c interface
| = Interface (AT91RM9200) |
W g
|) i ! |
Hardware — software |
| communication layer
| |
I- —_—— e —
| FPGA logic FPGA I
(ALTERA Cyclon I)|

| _—————— P S |

\\

Signal
source

Figure 8 General UMSWI architecture

According to the requirements, the UMSWI control system is based on an embedded
operating system. Such solution enables high level of flexibility which was decided to be
utilitized to the benefit of the system’s flexibility, robustness, simplicity of further extensions
and modifications. The architecture and design of the entire system and each component
were prepared having in mind reusability, extendibility and universality.

Each of the required interfaces (WUI & RMI) is placed in the embedded operating
system environment. Both interfaces need to communicate with FPGA logic, therefore
a common hardware-software communication layer can be provided. The layer is designed
according to operating system rules and adjusted to underlying hardware specification.
It provides communication with FGPA logic on various levels of abstraction to enable
creation of additional interfaces and control of different FPGA logic or even different
hardware

Maciej Lipinski 20

Universal Measurement System with Web Interface

Remote Measurement Interface (RMI) needs to implement standard interface which
can be connected to (on the physical level) and understood (on the abstract level) by
third-party measurement applications running on the remote PC. Therefore the client
application does not influence the system’s architecture, unlike in the Remote User Interface
(RUD. In RUI, depending on the technology choice, the application running on the remote PC
can be either an integral part of the UMSWI control system, or can have substantial influence
on the system'’s architecture.

The FPGA logic provides logic to control acquisition process and communication
interface to exchange data between ARM and FPGA. The communication interface is
universal to enable control of custom-made acquisition control logic (i.e. extended
to implement computation algorithms like FFT).

2.1 Embedded Operating System — Linux

The choice of embedded operating system was preceded
by background research on available solutions suited for
AT91RM9200 architecture. The review is summarized
in Appendix A: 2.1 .

All the proprietary solutions were discarded since they
increase the costs of UMSWI and bring licensing issues
in further extensions or modification of the system. Furthermore,
the number of users of proprietary embedded operation systems
is smaller and the exchange of information between them not as
public as in the case of open source embedded operating (—————————————____
systems. Therefore, the choice of non-proprietary embedded
Linux, the most popular among embedded open source
operating system with the strongest developer’s support . There
is a vast number of books, articles and forums describing it's usage and development
on ARM mikroprocessors: [26, 27, 28, 29]. The author of [27] in the chapter “Reasons for
Choosing Linux” as well as the author of [28] in the chapter “Why Embedded Linux” devote
few pages pointing out advantages of using Linux. Among others are: “availability of code”,
“hardware support”, “available tools”, “Community support” and many others. Running Linux
enables using a great number of open source programs and support of a strong and
numerous community of Linux and embedded Linux developers. It was decided not to use
any of the open source Embedded Linux distributions to ensure systems wide portability.
If the system was developed for particular embedded Linux distribution, using the UMSW!I's
control system on the architecture not supported by the chosen distribution might pose
a problem. Therefore, “vanilla” kernel was used making UMSW!I control system potentially
usable on any distribution. “Vanilla” kernel is the Linux kernel version maintained by Linux
Torvalds (the creator of Linux) himself. It servers as a reference point for all the distributions
and ports of Linux. Many Linux operating system vendors modify the kernels of their product,
i.e. to add support for drivers and features not officially released as stable. All the embedded
Linux distributions are include versions of “vanilla” kernel.

Embedded
Operating System

Figure 9 UMSWI
architecture - Linux

2.1.1 Embedded Linux System for UMSWI

The architecture of Embedded Linux System for Universal Measurement System with
Web Interface follows general rules of embedded Linux system architecture which are
described in details in Appendix A: 3.1 . The architecture is determined by three factors :
e Hardware restrictions (storage size, RAM, peripherals),

Maciej Lipinski 21

Universal Measurement System with Web Interface

e System requirements and applications,
« Potential portability to other architectures.

One of the main hardware restrictions in Embedded Linux Systems is storage size.
Frequently, the biggest challenge for embedded developers is to fit the system into limited
memory space. 8 MB of flash memory provided by UMSWI is more than sufficient to hold
embedded Linux image with compiled kernel and root file system providing basic utilities.
It turned out that the flash memory is also sufficient to hold all the utilities of UMSWI.
However, it was decided to store UMSWI utilities on the MMC/SD memory card. Actually,
UMSWI utilities are stored in both locations (root file system on flash memory and MMC/SD).
It allows the system to be much more flexible. If the system is to be ported to an architecture
with limited flash memory, MMC/SD can be used. If MMC/SD slot is not provided, UMSWI
utilities are read from flash. On the startup, the system tries to find UMSWI utilities
on MMC/SD card in the first place. If it fails, utilities stored in flash are used. It makes
the system robust and enables easy upgrades. The user upgrades or modifies UMSWI
utilities stored on MMC/SD. If the upgrade fails, or the user's modifications are erroneous,
the system is still useful provided the MMC/SD card is not inserted.

The Low-level interface is appropriately ported to mach the AT91RM9200 architecture
and ARMputer peripherals.

2.2 FPGA logic

FPGA logic architecture is composed of two
parts: Communication Logic (CL) and Acquisition Management
Logic (AML). Communication Logic is used to exchange information
between Acquisition Management Logic and Remote Interfaces
(in principle: operating system user space):

e acquisition parameters

e state of acquisition

e measurement data] TN | e |
Acquisition Management Logic is meant to manage data acquisition, Figure 10 UMSWI
in particular: architecture -

e collecting data from ADCs

» storing data in SSRAM (during data acquisition)

e reading data from SSRAM (during data readout)

e data processing

* trigger management and detection

Such architecture makes it easier to further extend the system (i.e. with different data
processing algorithm) or adapt it to different hardware. Thanks to the separation, in case
of system extension or adaptation, the main modifications are performed in the Acquisition
Management Logic, while the communications remains unchanged or requires very small
modifications.

The Acquisition Management Logic is controlled, through Communication Logic,
by the user. The control includes starting/stopping the acquisition and determining
the acquisition characteristics (parameters). The parameters were determined studying
operation and control of an oscilloscope:

e Sampling time (ts) — the minimum sampling time (ts.i,) is determined by ADCSs’
sampling frequency (100MHz), sampling time can be a multiple of tsy,, only,

¢ Record length (I) — number of samples stored in SSRAM after trigger. Maximum value
of record length (Inay) is limited by SSRAM size (128K 32bit-words),

Maciej Lipinski 22

Universal Measurement System with Web Interface

« Delay time (td) — the interval between trigger detection and start of record length
counter,

» Trigger source (SRC)- there are three types: external signal, signal from ARM9
(user), signal level.

e Trigger level,

e Trigger edge,

It was decided to store each of the parameters in FPGA as a register mapped into
separate address of ARM9 microprocessor memory space. Therefore, the task
of Communication Logic is to:

e recognize the operation (read/write),

e decode the address presented on the address bus

* read data from ARM data bus and write it into appropriate register in case of ARM
write operation,

e read data from appropriate register and present it on the data bus, in case of ARM
read operation,

Acquisition Management Logic updates the registers with acquisition state or measured
data and controls the content of other registers. Such architecture allowed to solve
the problem of two clock domains described in details in Appendix A: 1.1.

Another hardware obstacle, which influenced FPGA logic architecture (described
in Appendix A: 1.1), is the fact that the memory address space mapped to FPGA by ARM
is smaller than SSRAM size. Therefore, the entire memory space of SSRAM is mapped to
one FPGA register of one word size (16bits) called readout register. This register is, in turn,
mapped to certain address in ARM address space. Each time the processor reads readout
register, new data from SSRAM is provided by Acquisition Control Logic. Because data width
of bus between ARM and FPGA (16bits) is twice smaller than SSRAM world (32bits), it takes
two readout operations for ARM read entire SSRAM word. The FPGA logic architecture
is presented in Figure 11.

ARM9 ALTERA CYCLONE | _

OE=———ip>|
b — ot
A 1 -CLK sw2— SSRAM
(G - . —
iy o Acquisition cLKe
Communication q | Address[18:0]s-
Management

Logic

ﬂ@[\& :|_<::| Logic 1
®-® |~ <
-

ADC_SEL

[o:eLlloay
[o:erlzoav

ADC ADC
[} [}

Figure 11 Acquisition and readout control and dataflow

Maciej Lipinski 23

Universal Measurement System with Web Interface

2.3 Hardware-software communication layer

The hardware-software communication layer is ~-—-—-—————————————— |
understood as an interface between Linux user space and
FPGA. Its main purpose is to provide communication
between Interfaces and FPGA. However, the configuration of
FPGA (sending a binary stream to FPGA) is also included
into the layer’s tasks.

Since Linux is used as operating system, there are two
possible approaches to interface hardware connected to
microprocessor and mapped into memory address space:

 Mapping appropriate address in User Space -
slower, easier to implement,

e Writing Linux Device Driver to access appropriate Figure 12 UMSWI
address in Kernel Space — faster and much more architecture - driver
efficient for data transfers, enables interrupt
implementation, not a trivial task.

The communication and configuration were decided to be approached separately, choices
of the appropriate technique for each of them are discussed below in separate subchapters.
The result is summed up in the Figure 13.

Hardware — software
communication layer

2.3.1 FPGA configuration

In normal operation of UMSWI, FPGA configuration is done during the startup
of the system. Reconfiguration during system operation is only done in the development
phase. Therefore, the speed of configuration process is not crucial and it has been decided
to use simpler and faster to develop User Space mapping to implement FPGA configuration.

2.3.2 Communication between ARM and FPGA

The communication between ARM and FPGA is crucial for system’s operation and
is one of its basic components. Up to 265 Kb of measurement data needs to be transferred
from FPGA. To comply with the intention to create universal and extensible system,
the communication is provided on two levels of abstraction:

« Interface suited to the implemented Interfaces and Acquisition Logic
* General interface enabling to extend Acquisition Logic or use the existing Logic
in a non-standard way.
Such solutions enables flexibility on both sides of the communication layer. It is possible
to extend the already existing applications (alternatively, create new applications) to use
the same Acquisition Logic in non-standard way or to use modified or entirely different
Acquisition Logic.

The communication layer along with FPGA configuration are the only software parts
of the UMSWI control system which are directly hardware dependent. While the FPGA
configuration is a simple operation, communication layers is more advanced and its
architecture needed to be created having in mind easy porting to other hardware
configurations. Therefore, it was decided to create a Linux Device Driver [30] with
architecture clearly divided into abstract and physical layer. Such separation enables
the driver to be easily portable to other hardware configuration and also makes it easier
to extend the driver with additional functionality.

Maciej Lipinski 24

Universal Measurement System with Web Interface

Abstract layer

Abstract layer of the driver is responsible for communication between the driver and
user space (in which all applications are run) and implements the driver’s logic. It is hardware

independent.

Physical layer

Physical layer implements the communication between driver and hardware as well

as hardware’s initialization.

AT91RM9200

|User’s space application or script| Linux User Space

Gonflouratian Read!wri:] ‘;:ontroiler <\,:’ _
S address decoder _

] [

ALTERA
CYCLONE |

Paraller Input/Output

o) External Bus Interface (EBI)
3 =z |z z &9

a B 1z B E I

il I) S B ™ B |a

v ¥ |2 vy Y V VY

Flgure 13 Communication between FPGA and ARM

2.4 \Web User Interface

Web User Interface is clearly divided into UMSWI
Management Interface (UMI) and Oscilloscope & Spectrum
Analyzer Graphic User Interface (O&SA GUI). The former allows
configuration of UMSWI's parameters such as IP address,.
The later is meant to perform measurement and present
the results in graphical form. Additionally, information about
system (manuals) are provided by the interface.
Since Oscilloscope and Spectrum Analyzer GUI is much more
demanding (in terms of development effort and system

requirements), sophisticated and crucial to the system, it was
decided to make the choice of technologies-to-be-used
according to its requirements and adjust the implementation
of UMSWI Management Interface to the chosen solutions.

2.4.1 Oscilloscope and Spectrum Analyzer

Figure 14 UMSWI
architecture - WUI

Architecture of Web User Interface depends greatly on chosen technologies. In general

three components of the interface can be distinguished:

Maciej Lipinski

25

Universal Measurement System with Web Interface

e Graphic User Interface (displayed in the client’s browser)

* Web Server

* Interface between Web Server and hardware (in particular, Linux Device Driver)

For each of the components, a decision of technology-to-be-used needed to be taken
considering choices of technologies for the other components. A review of possible solutions
for each of the components is included in Appendix A: 2.3, 2.4 and 2.5

The choices were made taking into account two criteria: simplicity and limited
resources. Simplicity of solutions is important for the development and further extensions
to the system. Resource limitations:

e Processor speed

* RAMsize

Simplicity:

« the less tools need to be cross-compiled the better — some tools, applications are not
trivial to port to embedded architecture

* less sophisticated solutions are easier to test and debug

To move much of the workload (i.e. graphic generation, user interface handling) from
the embedded system to the client PC (far more powerful unit), Java Applet technology was
chosen for implementation of Web Graphic User Interface. Java Applet is a web application
which is downloaded and executed in the client's browser. Since the interaction with
the client is managed by the applet locally on the client's machine (unlike in PHP where
client's interaction is handled by the server), network traffic can be reduced
by communicating with the server only during hardware interfacing. Therefore, the role
of the server is limited to simply passing information/data from/to the driver. This eliminates
many server requirements imposed by other technologies (i.e. support for PHP).

The server’s capabilities influence the choice of technology used to interface hardware
and vice versa (hardware interface impose requirements on the server). If the Web Server
embeds scripts interpreter (i.e. PHP) or enables Java Servlets, hardware (through Linux
Device Driver) can be accessed directly by opening its file representation. However, since
the server's requirements from the Web Graphic Interface (web applications) were
minimized, it is reasonable to choose hardware interface with minimum Web Server’'s
demands as well. Such choice enables to use the simplest Web Server. Therefore, Common
Gate Interface (CGIl) was chosen as an interface between Web Server and Linux Device
Driver (which implements /proc file system — very convenient for CGI access)
and consequently the simplest and smallest (9K, [29]) Web Server provided by BusyBox
could be used. The choice to use CGI in UMSWI is supported by the following advantages:

e CGI is well known, well developed and it is still being used by many web pages
and applications (ex. hotmail.com),

e ltis implemented by most of web servers, does not involve any additional tools to be
cross-compiled,

« It allows to execute “CGI scripts” written in many different scripting languages as well
as compiled programs,

e Any distribution of Linux enables writing scripts for CGl interface, it means that
as long as the most basic version (even very old) of Linux is ported for a platform,
and the most basic HTTP server is available, CGI can be used. As a consequence,
using CGI makes the whole system very flexible and platform independent.

Except for the communication with the driver, CGI scripts can be used to manage UMSWI
control system by performing system calls (i.e. to configure Ethernet Interface)
or starting/stopping applications (i.e. SCPI Server). Choosing BusyBox Web Server provides
portability, since such server is available for majority of embedded Linux systems.
The choice of technologies is summarized in Figure 15.

Maciej Lipinski 26

Universal Measurement System with Web Interface

Client's Computer ARMputer (AT91RMO000 based)

Client’s Web Linux
Browser Server BIFVETES
i / Interfacing driver
Generated on client’s (driver side):
Applet 2. proc file system

ONLINE Graphic User Interface Interfacing driver (server side):

2. Common Gate Interface (CGl)

Many Web Servers available:

3. Busy Box http server (9K, CGl, script
support)

Figure 15 Choice of technologies for Web Interface of UMSWI [31]

Once the choice of technologies was done, the Web Interface architecture could be
created (Figure 16). The Web Server stores UMSWI website and Java Applet binaries, and
provides Common Gate Interface. Once the web site embedding Java Applet is opened,
the applet is downloaded to the web browser and executed. The applet communicates with
hardware (Linux Device Driver) through CGlI interface. CGl is also used by the UMSWI
configuration web page.

Web Browser
UMSWI web site Jen Web Server
. Applet | ;), download
Java ‘ L E
. (N COMMON GATE
Applet L7k »| INTERFACE

v

Linux Device Driver,

Figure 16 Oscilloscope and Spectrum Analyzer Web architecture

2.4.1.1 Java Applet architecture

One of the system patterns which helps in application design on the abstract,
architectural level is Model-View-Controller, described in details in Appendix A: 3.2. It is
a language-independent pattern which is widely used. It was chosen because it allows easier
and independent modification of visual appearance or underlying business rules. Thus,
it enables easy extensibility and reusability. It divides the application into three logical
components: model, view and controller making it easy to customize or modify each part.
An architecture of UMSW!I’'s applet organized according to MVC paradigm is presented in
Figure 17.

Maciej Lipinski 27

Universal Measurement System with Web Interface

e T S]

. s, Responds
Draws %, Displays ¢ S toinput
graphikes % controls',' "\‘ events
. . 3
Mt_aasurement data Requests from the
display & control web client to change
panel model
View Control

View Controller
di5p|ays modifies
model model

Oscilloscope &
Spectrum Analyzer

Model

Ethernet

Figure 17 UMSWI’s architecture according to MVC

Model represents Oscilloscope and Spectrum Analyzer, it reflects their state.
Thus, Model communicates with the hardware and changes its settings. View is responsible
for displaying data provided by Model. Control panel, which enables to change the Model,
is also displayed by View. Any changes made by user on the control panel are detected by
the Control component which updates the Model. The control panel enables to adjust two
kinds of settings:

e Hardware settings — parameters which can be used to control acquisition logic
(sampling time, trigger delay, trigger source, record length, trigger level),
« Display settings — parameters which control the way data is displayed and whether
it is displayed (Volts/Div, Time/Div, Freg/Div, enable chanl/chan2),
It also enables control of the device state (start/stop acquisition) and display of the device
parameters

2.4.2 UMSWI Management Interface

The UMSWI Management Interface is kept simple on demand of CERN’s employee
who required the device. It includes only the most necessary configuration:
* |IP address (setting current and saving default)
e Mask (setting current and saving default)
Port of SCPI Server
SCPI Server on/off
The default IP address is saved in the memory and the system is started with such
address. The possibility of setting of IP address or SCPI Server Port is important when
the system is integrated into a Local Network Area (LAN) infrastructure or when many
UMSWIs create distributed measurement system. It was decided to enable starting
and stopping SCPI Server to save UMSW1’s resources when SCPI Server is not used.
Common Gate Interface scripts allows to perform the above-mentioned configuration.
It would be also possible to use Graphic User Interface developed as Java Applet to do

Maciej Lipinski 28

Universal Measurement System with Web Interface

the configuration. However, it was concluded that Java Applet is too heavy
weighted-technology for such trivial task. Therefore it was decided to prepare simple
webpage and use Java Script for data verification and calling CGI scripts. The architecture
of UMSWI Management Interface is very similar to Oscilloscope and Spectrum Analyzer's
architecture. Figure 18 presents architecture of entire Web User Interface.

Web Browser

UMSWI web site
Main page UMSWI Oscilloscope & Information:

management Spectrum Analyzer|
Oscilloscope &
Spectrum Analyzer}
manual

Java Java
Script Applet

a

SCPI manual

Web Server

5| COMMON GATE |
INTERFACE

Embedded Linux System

Linux Device System SCPI
Driver calls Server

Figure 18 Web User Interface architecture

2.5 Remote Measurement Interface

Remote Measurement Interface (RMI) is described in this ['
thesis as an interface which enables UMSWI to be controlled |
remotely by measurement applications (i.e. LabView, Matlab). |
The medium to be used, is determined by the UMSWI's hardware: :
Ethernet. An in-depth investigation was conducted to choose |

|
|
|
|
|
[
|

an appropriate interface for implementation. A review of possible
solutions can be found in Appendix A: 2.2 The following
requirements were taken into consideration:

« Well defined and widely used,

* Modern, Figure 19 UMSWI

* Simple, architecture
e Physical layer: Ethernet.

It seems that most of the measurement instrument vendors (i.e. Agilent, Tektronix, HP)
offer new high-tech devices with many remote measurement interfaces. However, Standard
Commands for Programmable Instruments (SCPI) seems to be the most widely

Maciej Lipinski 29

Universal Measurement System with Web Interface

implemented. The medium of data transfer has changed from GPIB or RS to Ethernet
and USB, however the SCPI standard is still alive. What is more, SCPI can be used by most
of the popular measurement applications (like LabView) and applications which can connect
with measurement instruments to retrieve measurement data(i.e. Matlab). Therefore, it was
decided to implement Standard Command for Programmable Instruments (SCPI).

The SCPI standard is shortly described in Appendix A: 3.3. The standard defines
command’s structure and syntax but does not specify underlying hardware or software
solutions. Figure 20 presents example SCPI command and its architecture.

Command message elements:
Header
A

r N
:TRIGger:EDGE:SQOURce Et)g

Mnemonics Argument

Figure 20 SCPI example command

In principal, an input to the RMI application is a string of characters consisting of a command
(message), or a set of commands separated by (;)semi-colons. Each command message
is composed of a sequence of mnemonics separated by (:) colon and an argument. The path
determined by mnemonics unequivocally determines what action shall be performed.

Remote User Interface needs to be an application which implements TCP/IP socket
server (called SCPI server in this thesis), it accepts and responds to the request from
measurement application clients. The architecture of SCPI Server is presented in Figure 21.
Interpretation of SCPI commands consists of two phases: parsing and decoding.
Itis followed by command execution using Hardware Interface. Parsing is device-
independent. It depends on the syntax which is common for all the SCPI command. After the
command has been divided into mnemonics and argument, the command must be decoded
and executed. The decoding depends on the commands dictionary (which is based on
the controlled hardware capabilities) Execution is device dependant. It needs to be
implemented for the particular device. This is why the architecture of SCPI server is modular.

Meaurement Interface — SCPI

Hardware [0ty
Parser Decoder : =P Device
interface Diivei

Measurement| Ethernet Network |\
application @8 interface [

Lodfile Interface

Figure 21 SCPI server architecture

SCPI standard strictly determines server to the following messages:

1. Device settings information if a query is inputted,

2. Measurement data, if data acquisition is turned on.

3. Error codes (a digit) if an error occurs.
To provide user with more information about RMI application performance and detailed error
messages, a logfile Interface is used. All the messages about performance of each
component of the application and detailed error messages are written to a file.

Maciej Lipinski 30

Universal Measurement System with Web Interface

2.5.1 A Note on SCPI Complience

When implementing SCPI command interface two approaches are possible:
e Full SCPI compliancy
e SCPI “look and feel” commands
Full SCPI compliancy requires to follow strictly SCPI Standard documentation which defines
what certain commands should do, what commands to include for certain instrument classes,
etc. Often, full SCPI compliancy is not implemented. Instead, by giving the user the “look and
feel” of SCPI, the user will be immediately familiar with the equipment's control.
This approach is extremely common amongst instrument manufacturers. Studying
Tektronix's [7], RIGOL’'s [6] and other companies’ programmer’'s manuals of digital
oscilloscopes, it was noticed that some of the SCPI commands found in the manuals do not
comply with SCPI standard but seem useful and reasonable, while mandatory SCPI
commands are not implemented because they are not necessary.
The “look and feel” approach was taken in the implementation of SCPI standard for
Measurement Interface of Universal Measurement System.

2.6 Summary

Figure 22 summarizes the architecture of UMSWI. For each of the required interfaces
(measurement and web interface) a server is provided. Remote Measurement Interface
server implements Standard Command for Programmable Instruments (SCPI),
thus it is called SCPI Server. The Web Server is provided by Busybox [32]. SCPI and WEB
servers communicate with hardware (in order to control acquisition process and retrieve
measurement data) using Linux Device Driver. Since SCPI server is developed from
scratches, it implements communication with Linux Device Driver. Web Server needs
Common Gate Interface (CGI) to communicate with Linux Device Driver.

(ZQ

<

SCPI client
(measurement application:
Matlab, LabView)

| ETHERNET I

S . A
@ [scri|[web
8 |server| [server
a3
oe ;
23 =
= % <
g:f Linux Device
Driver

!

Acquisition Control
(FPGA)

Figure 22 UMSWI architecture [31]
A client to Remote Measurement Interface Server, in principle, is any measurement

application (i.e. LabView, Matlab) which enables control of remote instruments via TCP/IP
using SCPI commands. A client to Web Server is a web browser with Java Script and Java

Maciej Lipinski 31

Universal Measurement System with Web Interface

Applet enabled. Java Applet requires Java Virtual Machine installed on the client.
All the UMSWiI-related software is stored on SD/MMC card enabling easy update
and modifications.

A careful choice of technologies and well-thought planning resulted in very portable,
flexible and easily extensible software architecture. The requirements towards Linux utilities
are very basic. The HTTP server needed for the system to operate is provided by Busybox
(used by most of the embedded Linux distributions) and only adds 9K, which is not much
ever for the Linux distributions with strong memory constraints. In principle, the HTTP server
with CGl interface is the only requirement for Linux distribution to run the system.

The only hardware dependant parts of the system are: Linux Device Driver
and application which configures FPGA. Only these two components need to be changed
to run the system on different hardware.

Application of MVC architecture in applet should result in easy extensions or changes.

Maciej Lipinski 32

Universal Measurement System with Web Interface

3. Design and Implementation

3.1 Development environment

The Universal Measurement System with Web Interface (UMSWI) was being
developed for 2 years. It took considerably long time to establish the most convenient
development environment, tools and workstation.

A typical cross-development environment according to [26] is presented in Figure 23.
A host is a development workstation, a PC or Laptop, running Linux distribution.

~Webster's defines nonsense as "an idea that is absurd or contrary to good
sense." It is my opinion that developing embedded Linux platforms on a non-
Linux/UNIX host is honsensical.” [26]

A target is referred to embedded hardware platform (UMSWI). Thus, native development
is understood as building of applications on and for the host system. On the contrary, cross-
development means the compilation and building of applications on the host system that are
supposed to run on the embedded system.

Etherner Hub
Host Development System |
RS —_
|J - Eaaa
- jem==
1 Ei
‘ RS-232 bl ==

Embedded

Linux 'l'arg::t

| Serial Terminal

Figure 23 Layout of cross-development environment [26].

The configuration presented in Figure 23 was used during most of the development
of UMSWI. In the final stage of the development, setup was extended to the one presented
in Figure 24. The host development system was connected to a target board via RS-232
and Ethernet. A serial terminal program (minicom) was used to communicate with the target
board via RS-232. The u-boot bootloader, which is stored in the target’s flash memory, was
started automatically after the power-up. It is a very powerful tool which enabled the image
of Kernel along with root filesystem to be downloaded to target board using TFTP protocol
over Ethernet. Once downloaded the image was run. During development, NFS root mount

Maciej Lipinski 33

Universal Measurement System with Web Interface

for target board was used. Linux ran on the target board mounted the root filesystem located
on the host over NFS. There are many advantages of such a solution :
* Root file system is not size-restricted,
« Any changes to application under development are available to target system
immediately, the same files are available to target and host system simultaneously,
* Kernel can be debugged and booted before developing proper root file system,
« It makes development much faster and easier.

A second development computer running Windows XP was used for development
and debugging of VHDL design of FPGA logic. This computer is called FPGA development
and debugging workstation. Both workstations were connected using NFS file system.
It made file exchange very convenient. Altera Quartus Il software tool was used
for development and debugging of FPGA logic. The debugging was performed using
Quartus Il tool called Signal Tap || Embedded Logic Analyzer and Byte Blaster Il cable.
Signal Tap Il is a system-level debugging tool which enables to capture and display real-time
signals in any FPGA design. Signal Tap Il connects via Byte Blaster Il download/upload
cable with JTAG connection to device under test. The Windows workstation was also used
for website development and partly for Applet development with Eclipse. The Eclipse KDE
was run on both workstations.

Lmunx Eouter Windows

Host Development System BEGEEBEE| FPGA development and debugging
ey T =]
iil l|| — = |
. | — - |
- | B =

u |:| m:n
RS -}3', . g g By‘te Blaster IT

Embedded

Linux Target

N Serial Terminal

Figure 24 UMSWI development setup

The setup (applications) used for development of Universal Measurement System with
Web Interface is summarized in Table 2. It was learnt painfully by the author that the most
crucial was the choice of Linux distribution for the workstation. During the first year
of development SUSE10.2 Linux distribution was used. Under SUSE, few cross-compilation
toolchains were tested, e.g. Buildroot and Dan Kegel's crosstool. These toolchains were
troublesome to build and not satisfactory in embedded Linux development. Many books
about Linux embedded systems, i.e. [33] and [34], mention that Debian distribution is very
convenient for embedded system development. Therefore, Debian Linux was installed on
the development workstation. It was a very positive change for the UMSWI project
development. A considerable number of packages, including ARM development tools
(i.e. cross-compilation toolchain), is available for Debian (and Debian-related Linux
distributions). The package installation is easy and fast. A cross-compilation toolchain
provided as a Debian package by Free Electrons [35] was used during development
of Linux, fpga driver and SCPI Server. The toolchain is based on uClibc library popular
among embedded Linux systems developers. The usage of uClibc library allows to save
memory space (details in Appendix A: 3.1).

Maciej Lipinski 34

Universal Measurement System with Web Interface

UMSWI part tool/KDE Operating System

Embedded Linux Debian Linux

Linux Device Driver ARM gross-toolchaln Debian Linux
(Debian package)

SCPI Server Debian Linux

Java applet Eclipse Windows XP/Debian Linux
Website - Windows XP

FPGA logic Alera Quartus I Windows XP

Table 2 UMSWI development tools

3.2 Embedded Linux Operating System

The Linux, which is used on UMSWI, is based on TWarm Project [36]. Since
the ARMputer module and TWarm board are very similar, the hardware configuration
and ports could be applied to Embedded Linux System on UMSWI (with necessary
modifications).

3.2.1 Components

Root filesystem

The root file system is based on Filesystem Hierarchy Standard (FHS)[37]. The FHS
was trimmed, removing the directories used to provide an extensible multiuser environment,
such as: /opt/, /home, /mnt and /root. Only the essential directories were left.

|-bin

| -dev

| -etc
|---init.d
|-lib

| -proc
|-sbin

| -usr

|- --ARMscope
[---bin
|---sbin

| -war

Figure 25 root filesystem hierarchy
Kernel
The main component of the Embedded Linux is the kernel. Kernel used in UMSW!I is based
on TWarm Project kernel. It is a 2.6.19 “vanilla” kernel [38] patched with AT91 Linux 2.6
appropriate patch [39] with necessary changes to Ethernet PHY.

Maciej Lipinski 35

Universal Measurement System with Web Interface

Busybox

Busybox 1.00 was used to accommodate the root file system with necessary Unix tools
which are all symlinks to a single Busybox executable.

C Library

The library was provided by the cross-compilation toolchain which links the cross-compiled
applications against uClibc, instead of GNU C library (glibc). uClibc is a special C library
for embedded systems which is very popular and supports many platforms (i.e. ARM, MIPS,
PPC). It provides most of GNU C library functionality. Most of the applications that can be
compiled against glibc, should also compile and run using uClibc. It substantially reduces
embedded systems’ size. Only the most necessary library files where copied to the root file
system.

3.2.2 Configuration

Kernel
The most important features of kernel's configuration (Figure 27) include:
e Initial RAM fylesystem and RAM disk (initramfs/initrd) support
« Initramfs enabled with source from a give directory
* Ethernet (10 or 100Mbit) for AT91RM9200 support
e Configured for AT91RM9200 processor (ARCH_AT91RM9200) with support
for AT91RM9200-DK Development Board and AT91RM9200-EK Evaluation Kit
¢ Boot command: “mem=64M root=/dev/mem rw console=ttyS0, 115200” which means
0 “mem=65M" - force usage of a specific amount of memory,
0 ‘“‘root=/dev/mem rw” — specifies root filesystem
0 ‘“console=ttyS0, 115200" — use serial port number O as output console device,
baund rate: 115200
e USB support enabled
* Ext2 and VFAT file system support
e /proc file system support
* NFS boot support (during development)
* AT91 SC/MMC Card Interface support
Busybox
The most important of Busybox’'s configuration (Figure 26) include:
* Build Busdybox as a static binary (no shared libs)
e Support reading inittab
e httpd Web Server enabled
» Support for Common Gateway Interface (CGI)
« ifconfig enabled with “hw” option
* telnetd, tftp enabled
» support for mounting NFS file systems

Arrow keys navigate the menu. <Enters selects submenus --->.
Highlighted letters are hotkeys. Pressing <Y> selectes a feature,
while <N> will exclude a feature. Press <Esce<Esc> to exit, <?> for
Help. Legend: [*] feature is selected [] feature is excluded

||| _General Configuration >
uild Options --->
nstallation Options ---=
rchival Utilities --->
oreutils ---=
onscle Utilities ---»
ebian Utilities ---=
diters --->
inding Utilities ---=
nit Utilities --->

< Exit > < Help >

=1

o

Figure 26 Busybox configuration F|g!‘ure 27 L|nux kernel t:onfiguratiz)n

Maciej Lipinski 36

Universal Measurement System with Web Interface

3.2.3 System boot and startup
Booting sequence of Embedded Linux implementing initrafs is presented in Figure 28 .

Bootloader

- Executed by the hardware at a fixed location in ROM / Flash

- Initializes suppart for the device where the images are found (local storage, network, removable media)
- Loads the kernel image in RAM

- Execites the kernel image (with a specified command ling)

Kemel

- Uncompresses itsealf

- Initializes the kernel core and statically compiled drivars

- Uncompresses the initramfs cpio archive included in the kernel file cache (no mounting, no filesystem).
- It found in the iniframfs, executes the first userspace program: finit

Userspace: /init script {(what follows is just a typical scenario)
- Runs userspace commands to configure the device

{such as network setup, mounting /procand /sys..)

- Mounts a new root filesystem. Switch to it (switch root)

-Runs /sbin/init (or sometimes a new /linuxrc script)

Userspace: /sbin/init
- Runs commands to configure the device (if not done yet in the initramfs)
- Starts up sysiem services (dasmons, servers) and user programs

Figure 28 Booting sequence with initramfs [40, page 73]

Bootloader
At the startup, the bootloader is executed automatically from a given location, usually with
very little space. Therefore, 2 stages are implemented [29]:
1% stage bootlader — offers minimum functionality and is meant to access and execute
the 2" stage bootloader on a bigger location,
2" stage bootlader - offers the full bootloader functionality, it can be even an operating
system itself.

According to [28] the important features of bootloader include:

e Support for embedded hardware

» Storage footprint

e Support for networking

e Support for flash booting

* Console Ul availability

e Upgrade solutions availability

« Argument passing from the boot loader to Linux kernel

* Memory Map

e Calling PPROM routines from the kernel
Three bootloaders suitable for ARM-based embedded systems [29] :

« Das U-Boot: Universal Bootloader from Dentx Software [41]

* RedBoot: eCos based bootloader from Red-Hat [42]

* uMon: MicroMonitor general purpose, multi-OS bootloader [43]
In TWarm project, Darrell Harmond'’s bootlooader [44] (with hecessary modifications) is used
as a 1% stage bootloader (called loader in this thesis) and Das U-boot (with necessary
modifications) is used as 2" stage bootloader (called u-boot in this thesis). During
the development phase, both loaders were used like in TWarm project. U-boot provides
many useful utilities, it allows to download kernel image with Trivial File Transfer Protocol

Maciej Lipinski 37

Universal Measurement System with Web Interface

(TFTP), it passes to kernel boot parameters and PHY parameters (i.e. MAC address), it also
enables different kinds of booting (from network, MMC/SD card, etc). However, since it was
decided to boot the kernel and root file system from flash memory, it turned out that u-boot
is not necessary in the normal boot process of UMSWI, provided some modifications are
made in Linux start-up script, BusyBox’s configuration and Darrell Harmond'’s bootloader.

A tool enabling MAC address to be set from Linux (Networking Utilities
---> jfconfig/Enable option “hw” (ether only)) was added in BuysBox configuration and Linux
start-up script (/fetc/inittab) was appended to set up MAC address. The loader was modified
to perform default Linux start after short delay and BusyBox start on request. Modified
loader's menu in presented in Figure 29. It was decided to leave the possibility of starting
u-boot, since it can be useful for further development and there is enough space in the flash
memory. However, a modification was made to the address in which the u-boot is started.

Initializing SDRAM
Universal Measurement Sytem - by Maciex
32bit SDRAM ZxHynix HYSTWSE1628C

Uplocad Loader to Dataflash with wvector & modification.
Uplead u-boot to Dataflash.

Uptoad linux to Dataflash

Start U-boot

Start linux

Start u-boot and Linux

SDRAM test

Figure 29 Modified loader’'s menu

bt = R O S WY I)

Userspace
UMSWI specific startup operations are done in three steps:

1. The MMC/SD card with UMSWI utilites is attempted to be mounted
in /usr/ARMscope/location. The /usr/ARMscope/ folder hold all the custom-made UMSWI
utilities. The mounting is done in /etc/init.d/rcS (Figure 30) system initialization script

2. /usr/ARMscope/start (Figure 32) script is called (in /etc/inittab) . This script is used for
the UMSWI tilities initialization and can be modified by the user easily. It starts
the following initialization (by calling appropriate scripts):

. Configures FPGA (config_FPGA script)
. Loads FPGA driver (load_driver script)
. Starts SCIP server (if option enabled)

. Sets the default IP (set_IP script)

3. httpd web server is started as “respawn” (/etc/inittab file,Figure 31)
#!/bin/ssh

mount -t proc none Sproc
#uount -t devpts none Sdev/pts

(R R L R e

#echo 'mounting Ausr/AFMscope /!

sleep 2

mount -t wiat Sdev/mmchlk0 /fusr ARMacope s
sleep 2

LY on RS S (s I T

Figure 30 /etc/init.d/rcS system initialization script

Maciej Lipinski 38

Universal Measurement System with Web Interface

! k Jetc/inittahb

2 #

3 # Copyright (C) 2001 Erik Andersen <anderzsenfcodepoet.orgs:

i #

5 # Note: BusvyBox init doesn't support runlewels. The runlewels field is
& # completely ignored by BusyBox init. If wou want runlewels, use
7 # sysvinit.

g #

3 # Format for each entry: <ide:<{runlevels>:<actionr:<process>
10 #
11 # 1id == Lty Lo run oh, ot empty for Sdew/console
12 # runlevels == ignored
13 # action == one of sysinit, respawn, askfirst, wait, and once
14 # process == program to run

16 # Startup the systen

17 rmall:isysinit: fshindifconfig ethl0 hw ether 00:08:03:7a:3e:ls

Ia mall::sysinit: fshinfifconfig lo 127.0.0.1 up

3 null::sysinit: fshindroute add -net 127.0.0.0 netmask 255.0.0.0 lo

2 rmall::sysinit: fsbinfifconfig eth0 192.165.1.101 up

Al mill::sysinit: fshindroute add -net 192.1658.1.101 netmask 255.255.255.0 ethi

] # main rc script
2d tisysinit: fetcdinit.dSres

26 #atart ARM=cope utilities
27 null::sysinit: fusr /ARMscope//start
i rll::respawn: fusr/sbinshttpd -h Susr /ARMzcope S

30 # Put a getty on the serial port
3 tLyli0: s respawm: fshingetty -L toy30 115200 wolO0z

32
=3 # S3tuff to do for the 3-finger salute
34 tictrlaltdel: /shin/reboot
35
36 # Stuff to do before rebooting
37 rll: i shutdowm: /bin/umount -a -r
dutn}
39

Figure 31 /etc/inittab file

#!/binssh

configqure FPGL
Ausr/iPMacopesscripts/config FPGA

load FPGA driver
Ausr /ARMscope/scripts/load driver

f TS HEE . R N S T e

fiet

start SCPI (if enabled)
10 Az sAPMescopesscripts/atart scpl

ut

11
13 # set default IP

14 susr AARMscope/scripts/aet ip

Figure 32 /usr/ARMscope/start script

Maciej Lipinski

Universal Measurement System with Web Interface

3.2.4 UMSWI utilities organization

Tools and data which are used by UMSWI are stored in /usr/ARMscope folder in root
file system and on MMC/SD card. Its organization is presented in Figure 33.

| -ARMscope
|---data

| ---FPGAconTig
|---FPGAdriver
|---5cpi_server
|---scripts

|- - -
|-----cgi=bin
....... oscilloscope
....... systemConfig
|====- data

|====- images
|-----0scilloscope

Figure 33 UMSWI utilities organization

FPGAconfig holds the .rbf file with FPGA logic configuration and a small application which
configures FPGA.
FPGAdriver holds FPGA Linux Device Driver compiled as a loadable module
scpi_server holds SCPI server application
www holds:
* the UMSWI website (in www/),
» CGl scripts (in www/cgi-bin/), two kinds:
0 used in applet-driver communication (in wwwy/scripts/oscilloscope/)
0 used for system configuration (in www/scripts/systemConfig/)
» oscilloscope and spectrum analyzer applet (in www/oscilloscope/)
» data available on the website, i.e. Matlab scripts (in www/downloads/)
* images used on the website (in www/images/)
data holds information which needs to be stored between boots, i.e. default IP
start is a script which starts UMSWI utilities

3.3 Implementation of the FPGA logic in VHDL

Data acquisition and readout are managed by Field Programmable Gate Array (FPGA).
The logic for FPGA was created in Very High Speed Integrated Circuits Hardware
Description Language (VHDL) using Altera Quartus Il programmable logic device design
software.

ADCs require low-jitter clock while ARM needs an independent clock for data readout.
Therefore there are two clock domains (see Appendix A: 1.1) and different parts of the logic
needed to be divided according to the clock domain affiliation (Table 3).

90 MHz 100 MHz

1. Communication with ARM 1. ADC control
a. Control register 2. SSRAM control during data acquisition
b. Readout 3. ONLINE data analysis
2. SSRAM control during processor readout | 4. Data acquisition parameters
implementation (delay, length,

sampling time)

Table 3 FPGA logic design components according to frequency affiliation

Maciej Lipinski 40

Universal Measurement System with Web Interface

In terms of clock domain, there is a clear division between FPGA<->ARM communication
(Communication Logic) and the rest of the logic (Acquisition Management Logic) which
is reflected in the architecture of entire FPGA logic. Unfortunately, SSRAM needs to be
operated with two different clocks depending on the state (acquisition/readout). General
design of FGPA logic is presented in Figure 34.

Communication

h Acquisition Management Logic
Logic

CLK=100MHz

SSRAM_CLK
CLK=90MHz

ARM
interface

ARM ADDR control
- logic

ARM_RW_CTRL

SSRAM
rd_addr counter
SSRAM
test_addr counter
SSRAM
wr_addr counter
Status ; Record Lenght M
register |—fAcqusition U K- SSRAM_RW_CTRL
control X

logic

SSRAM_ADDR

==/ [N/

Sampling Time
counter

TRIG
delay counter

1

Control select

registers

ARM_DATA

xXCcZ

EXT_TRIG
K- SSRAM_DATA1

I Comparator |

Readout @
register

]

I

Figure 34 Data acquisition and readout design

< SSRAM_DATA1

3.3.1 Communication logic

Data acquisition is controlled by parameters described in chapter 2.2. Additionally,
the following parameters were added during development:

* Readout start address — enables to set the address from which data readout
is started. By default, readout starts from the address where first acquisition data
was stored (at the moment of trigger detection or after delay)

* Test mode — enables and controls tests of SSRAM.

Parameters returned by acquisition process:

e Status - indicates state of acquisition process,

» Start address pointer - indicates the first address in SSRAM where acquisition data
is stored. If delay time is zero, it is the address of the sample during which trigger
occurred. If delay time is greater than zero, it is address of the sample stored when
the appropriate delay time was counted down.

e Stop address pointer — indicates the last address of the acqusition data stored
in SSRAM.

The parameters are stored in FPGA registers which are mapped into ARM address space.
The readout register, which enables the acquired data to be transferred from SSRAM
to ARM, is also implemented as FPGA registered mapped into ARM address space
and managed by the same logic.

Signals responsible for communication between FPGA and ARM are connected
on the ARM’s side to Static Memory Controller (SMC) which is a part of External Bus
Interface (EBI). SMC generates signals that control access to external static memory or
peripheral devices (up to 8 devices chosen by chip select lines NCSx). It is fully

Maciej Lipinski 41

Universal Measurement System with Web Interface

programmable and can address up to 512 M bytes. On the FPGA side write/read controller
and address decoder are implemented to manage communication with ARM. Figure 35
presents datasheet schema which was used to connect ARM pins with FPGA pins.
It determines the type of communication.

D[7:0] D[7:0]
D[15:8] D[15:8)
A[18:1] A[18:0]
SMC NLB |—
NUB | —
NWE Write Enable
NOE Qutput Enable
NCS2 Memory Enable

Figure 35 Shows how to connect a 16-bit device without byte access on NSC2 [45]

The following signals enable communication between ARM and FPGA:

e D[15:0] — bidirectional data bus

e A[15:0] — address bus

¢ NSCO - chip select number 0

* NWE — write enable

¢ NOE - output enable signal
The communication protocol is defined in ARM datasheet [45] and can be adjusted
by manipulating several parameters (Table 4).

Name Description Value SMC setting

Wait select | Enables/disables wait states (additional cycles

enable | during which NWE/NOE pulse is held low) enabled | WSEN =1

Number of | Defines the read (NOE) and write (NWE) signal

wait states | pulse length from 1 cycle to 128 cycles 1 NWS =1
Data read Standard or Early Read Protocol Standard DRP =0
protocol

Time between the moment when address is
Setup delay | available on the bus and write/read enable pulse is | 1 cycle | RWSETUP =1
set.

Hold delay | Length of the read/write enable pulse 1 cycle RWHOLD =1

Time between the end of read/write pulse and

Pulse dela .
y moment when data ceases to be valid on data bus

Table 4 Communication SMC settings

Maciej Lipinski 42

Universal Measurement System with Web Interface

Graphic interpretation of the parameters mentioned in Table 4 is provided in Table 5 and in

Figure 36.

e

Write Access with Setup and Hold Read Access with Setup and Hold
L I I I 6 I Py B
A0l Y 3
NET T e —
NRD Setup Puise Length NRD Hold

D[t5:0)

NWR Setup

Pulse Length NWR Hold

Figure 36 Interpretation of NRD/NWR Setup, Pulse Length and NWR/NRD Hold parameters

Number of .
: Read Access Write Access
Wait States
Mek I ‘ MK ‘ ‘ ‘ I
O NCS \E :/ NCS2 4;‘\ i i ;
D[15:0] —é—:b— ol % i 3 i
1 Wait St:-:le Access 1 Wait St:-:le ACCEss
MCK _N MCK — | J—l]— ,_
AL25:0] }{ : : :)C A[25:0] :}{ : : : b4 :
| i | | i | i
nes TN | 1 } P Nes TN } ! ! 7[—E_
NRC TN 1) i 2 ! i NRD TN 1) i & i i i
(1) Early Read Protocol
(2) Standard Read protocol

Table 5 Interpretation of Wait State parameter

In principle, the write/read controller is activated when Chip Select signal (NCS) goes low.
The address then is decoded. NWE and NOE signals are monitored, depending which signal
goes low, appropriate action is performed (reading/writing). The algorithm is presented

in Figure 37.

Maciej Lipinski

READ FROM
FPGA

Figure 37

WRITE TO

FPGA

Communication Logic flowchart

43

The choice of SMC parameters, which is presented in Table 4, was made through tests
using Signal Tap Il Embedded Logic Analyzer. Signal Type Il is a tool included with Altera

Universal Measurement System with Web Interface

Quartus Il software which helps debugging an FPGA design by probing the state of internal

signals in the design. Example test of read access is presented in Figure 38. The figure

shows correct readout. However, write access presented in Figure 39 indicates
that the parameters are inappropriate — only half of the word is written.
[log: 2009003/28 16 30:40 #0 click ta insert time far
Type [alias | lame L ® 4 2 f 2 4 6 g 0 12 18 18 18 E z]
L] | @ cPuD AFSEh ol 0942h FFFER
[| & buf_CRU_A 30CTh : 0011k 0013h 0011h 0013h 0015h 00Eh
= | CPUI_RbtaIT |
i T oPU_pCs.
s | CPLI_NOE
i Tepu e
= | CPU_MWE 3
[[T i 1 I) 1 I | [=] |
= E oriralerinsti|reg00 i e

Figure 38 FPGA-ARM communication test

log: 2008003/26 18:33.07 #0

click to.insert time bar

Type [Atias | Hoins [e e e e A1 A i 2
Lo [m oD 5678 1234h

[T | & but_cpU_A BOCTh 011h 0013h adtin

= CPU_MAAIT '

T | cPu_NCs I —

= CPLL_MNOE "

& | ePU_NOB

= CPU_MAE ;

5 |cLo e v o e e v T T e 0 o Y e o v o o O
& B .ontrollerinsttreg00 FFFFh SEFFh TZrth

Figure 39 FPGA-ARM communication test

The communication interface between FPGA and ARM is summarized in Figure 40 .

Maciej Lipinski

AT91RM9200

External Bus Interface (EBI)

Static Memory Controller (SMC)

4

B

adN
0dMN

00SN
[0:GLIv

[o:sila

A

-

Y A

<t

-

Read/write controller
and
address decoder

I

il
B

- .

ALTERA
CYCLONE |

Figure 40 ARM-FPGA interface

44

Universal Measurement System with Web Interface

3.3.2 Acquisition Management Logic

The process of acquiring data can be divided into three phases:

. Idle — no writing/reading to/from SSRAM, parameters can be set,
. Armed — storing data in SSRAM continuously, waiting for trigger,
Acquisition — storing required number of samples in SSRAM after trigger

occurred (and trigger delay was applied)

It seems reasonable to store the data read from ADCs continuously in SSRAM (Armed
phase). The memory is treated as circular buffer. When acquisition is ought to start (trigger
detected and delay time counted), the address of appropriate sample is remembered.
The processor readout by default starts from this address. Such a solutions enables the user
to view data which occurred before the trigger signal (as long as the record length is not
equal to 128k, which is the SSRAM size). The proposed acquisition process is summarized

in Table 6.

N° Description State
name

1 Parameters are stored in FPGA registers:

sampling time, record length, delay, trigger source, trigger level

Data is stored continuously to SSRAM with programmed frequency (sampling

I

D

L

E

A

R

2 | time). If the trigger by signal level has been chosen, simultaneously the level of M

acquired signal is compared with the trigger level value stored in FPGA register. E

D

T

3 When trigger signal is detected, the delay counter is activated R

I

G

After appropriate delay has been counted, the SSRAM address is stored in E

4 FPGA register and data acquisition is started by activating sample length L
counter.

A

Y

A

After appropriate number of samples is stored in SSRAM, the end address is ¢

5 saved in FPGA register and the bit indicating that data has been acquired is 8

I

R

E

activated. This is a signal for ARM processor that data is ready for readout.

Table 6 Acquisition process

Moore finite state machine (FSM) was designed to control data acquisition and readout
(Figure 41). State machine is in 100 MHz domain. However, it is controlled by registers
which communicate with ARM in 90 MHz clock domain. Communication between control
registers and microprocessor is available regardless of the FSM state.

Maciej Lipinski

45

Universal Measurement System with Web Interface

(ARM_ARM ='0' and SSRAM_test = 0

2T

COMPLETED SERAM test='1

'\ead_:nt_end ='1'
N 1 ARM_ARM =1
READ
5 SSRAM Q
=
=
ml
E|
[='%
=
&

wrile_ent_end ='1
L. _SSRAMTEST ___
delay_enable ="1"
and
. C. [rlg_Edge | I/

delay_enable ='0" and trig_edge ='1'

Figure 41 Finite state machine

FSM consists of five main states and two SSRAM test states. Testing features were added
in the debugging phase of the project. It was necessary in order to test SSRAM and data

buses at the working frequency. Detailed description of all the FSM states is provided
in Table 7.

Maciej Lipinski 46

Universal Measurement System with Web Interface

State

Description

IDLE

No acquisition, no data readout, all the acquisition parameters are recommended to be
set in this state

WAIT TRIG

Clock domain of SSRAM is switched to 100 MHz. Data is read from ADCs and written to
SSRAM in sampling time intervals (multiples of 10ns) continuously. SSRAM works as a
round buffer. FSM is in this state until trigger is detected or device is “dis-armed” by the
user.

The following parameters are loaded from control registers during this state: delay time
and sample length. It means that change of this parameters by microprocessor in the
subsequent states, will not affect current data acquisition process.

TRIG DELAY

If trigger delay is not enabled by the user (trigger delay time equals 0), FSM skips this
state. In this state, data is acquired with the appropriate frequency (sampling time). Time
set by the user (delay time, multiple of 10ns) is counted down, starting from the trigger
occurrence. After appropriate time has collapsed, SSRAM address is stored as start
address pointer in the control register. By default, readout starts from this address.
However, the address from which readout shall be started, can be set by the user.

CAPUTRE

Data stored to SSRAM with appropriate frequency (sampling time) for user-defined time
(number of samples).

COMPLETED

Acquisition is stopped and SSRAM clock is switched to 90 MHz. Flag bit in status control
register is set to indicate that data is read for readout. The default readout start address
can be changed. This state is maintained even after the readout is completed. So there is
possibility to read data multiple times. Return to IDLE state is possible only after ARM bit
in control register is set to zero (device “dis-armed”).

WRITE
SSRAM

Data is written to SSRAM as if during acquisition. Instead of writing data from ADCs, data

is generated by FPGA. There are few test modes which determine what data shall be

written to SSRAM:

e writing address to the memory indicate by the address,

» writing 0x5555 to even and OxAAAA to odd addresses on channel 1 and 0x0000 to
channel 2,

e writing 0x5555 to even and 0XxAAAA to odd addresses on channel 2 and 0x0000 to
channel 1,

» writing 0x0000 to both channals and all addresses

READ SSRAM

Data is read from the memory (only for Signal Tab Il observation)

Maciej Lipinski

Table 7 Description of FSM states.

47

Universal Measurement System with Web Interface

Data (2 x 10bits) is read from both Analogue to Digital Converters (ADCSs)
simultaneously and written to the same SSRAM word (32bits) under the address indicted
by the address counter. Data and address bus width between ARM and FPGA are both
16 bits. Therefore, it is possible to access from ARM directly only 2*° = 64 K of 16-bit words.
Since SSRAM has 128 K 32-bit words, it is only possible to access directly 25 % of SSRAM.

Since microprocessor access to SSRAM data is always performed by reading
consecutive words starting from a given address, it was decided to solve the problem
by mapping entire SSRAM memory into single 16-bit register (readout register). Each time
the readout register is read, the address counter is incremented. Since data bus between
FPGA and ARM is only 16-bits, one SSRAM word (32-bit) is read in two turns. The least
significant bit (LSB) of readout counter indicates which half of the SSRAM word is read
(high or low). Readout counter is incremented each time read operation is detected on
the readout register. The idea is presented in Figure 42.

SSRAM
0 1

ANALOGUE SIGNAL

0x0001
0x0002 P
0x0003
0x0004
0x0005
0x0006
0x0007 . T

0x0008 L -

0x0009 T—2>o

< READOUT |
0x000A s« | recister L ARM READOUT

A\

Figure 42 Measured data flow

3.3.3 Trigger detection

There are four possible trigger sources

a) ARM/AUTO - the user triggers acquisition, it is done by writing appropriate bit

in control register

b) External trigger — signal connected to special trigger input

c) Channel 1 — trigger by level of input signal to ADC on channel 1

d) Channel 2 — trigger by level of input signal to ADC on channel 2
These trigger sources fall into two categories:

1. Trigger source is a signal from ADC (c & d)

2. Trigger source is a binary signal (a & b))
In both cases, trigger is detected in so-called edge detector by analyzing four consecutive
samples of a binary signal and recognizing appropriate trigger edge (falling/rising). In further
case (2), the source is a binary signal which can be directly an input to edge detector
(bit in control register, TRIG IN). In former case (1), the source is an analogue signal
translated by ADCs to vector discreet values. Thus it needs to be translated into a binary

Maciej Lipinski 48

Universal Measurement System with Web Interface

signal which, in turn, is an input to the edge detector. The translation is done
by a comparator. Signal value is compared with set (by the user) trigger level. If signal value
is greater than trigger level, high level (‘1’) is set on the comparators output, otherwise low
level (‘0’) is outputted (Figure 43).

ARM / EXT CH1/CHZ2

ANALOG
INPUT

‘/—o.\\"i Ne8
TRIGGER.
LEVEL

3

\

1 1 1 0 0 0 0 0 CLK

|
|
Pour O YO O) e YT Y wes (e X)

7 YR

Input signal

Edge

detector 7T 7 Tle o 0 00 o
S | \

compare LLrLofo]

[0Jor]1]
[]1]ofo0]

Figure 43 Trigger detection process

— Falling/rising

Falling edge

— Edge detected

Rising edge

3.4 Linux Device Driver

“Device drivers take on a special role in the Linux kernel. They are distinct
“black boxes” that make a particular piece of hardware respond to a well-
defined internal programming interface; they hide completely the details of
how the device works. User activities are performed by means of a set of
standardized calls that are independent of the specific driver; mapping those
calls to device-specific operations that act on real hardware is then the role
of the device driver. “ [30]

Device drivers allow to interact with hardware devices from user space. They provide
an abstract layer between hardware and the application/script, thus the higher-lever
application code can be written independent of the underlying hardware.

In this project device driver is needed to provide interface between Linux user space
application (SCPI server) or scripts (CGI) and logic implemented in FPGA. Since the system
is meant to be universal (logic implemented in FPGA can be customized or replaced
completely), the driver needs to provide flexibility. The driver is also clearly divided into
logical and physical layers to make porting to other architectures as simple as possible
(Table 8).

Maciej Lipinski 49

Universal Measurement System with Web Interface

Functionalityy Description Layer File name

Hardware independent implementation of
Driver logic driver’s logic, uses custom read/write functions | abstract
to access hardware

oscilloscope.c
oscilloscope.h

Called during driver's initialization, used to
configure hardware (by writing appropriate
registers with appropriate settings) and map
Hardware physical address into virtual memory address FPGA_config.c
configuration | space. Hardware dependent because the FPGA_config.h
configuration needs to be appropriate to the

underlying hardware. No direct hardware physic
access.
Read/write
function Functions used to access hardware directly by

implementation | reading or writing appropriate address. k_IOfpga.c

Table 8 Drivers structure

3.4.1 Abstract layer

The fpga driver was developed as character device driver. Char devices are accessed
through names in the filesystem. Those names are called device files or nodes and are
conventionally located in the /dev directory. Char nodes are identified by a “c” in the first
column of the output of Is —I. This command prints also the information about device numbers
(major and minor). The major number identifies the driver associated with the device.
The minor number is used to determine exactly which device is being referred to. fpga driver
implements two kinds of device numbers allocation. By default, it allocates device number
dynamically since there is a constant effort within Linux kernel development community
to move over to the use of dynamically-allocated device numbers and a randomly picked
major number can lead to conflicts and troubles if the driver is more widely used. In case
a static allocation is desired, it is possible to specify device number at the load time.

The fpga implementation uses a global variable, fpga major, to hold the chosen
number (there is also a fpga_minor for the minor number). The variable is initialized
to FPGA_MAJOR_NUMBER, defined in fpga.h. The default value
of FPGA_MAJOR_NUMBER in the distributed source is 0, which means “use dynamic
assignment.” The user can accept the default or choose a particular major number, either
by modifying the macro before compiling or by specifying a value for fpga_major
on the insmod command line.

The fpga driver connects four basic operations with the reserved device numbers
through file_operations structure (defined in <linux/fs>). The structure is a collection
of function pointers. Each open file is associated with its own set of functions which are
in charge of implementing the system calls. A file_operation structure in fpga driver is called
fpga_fops (according to convention). There are for fields in the structure which point to
the functions in the driver that implement the following specific operations (Figure 44):

Maciej Lipinski 50

Universal Measurement System with Web Interface

struct module *owner

Not an operation but a pointer to the module that “owns” the structure. This field is used
to prevent the module from being unloaded while its operations are in use. It is simply
initialized to THIS_MODULE, a macro defined in <linux/module.h>.

int (*fpga_ioctl) (struct inode *, struct file *, unsigned int, unsigned long);
Implements ioctl system call which offers a way to control device.

int (*fpga_open) (struct inode *, struct file *);
The first operation performed on the device file. It is used to track the number of opened
device references

int (*release) (struct inode *, struct file *);
This operation is invoked when the file structure is being released. It is used to track
the number of opened device references.

134 [H M File operation structure.

135 : Aszociates the driver najor number) with device operations.
135 I The structure is a collection of function pointers. Bach open file iz associated with itz own set of functions
137 T

138 static struct file operations fpga fops =
iz = {

140 i . OWner = THIS MODULE,

141 : .ioctl = fpga ioctl,

192 i .open = fpga open,

143 : .release = fpgerelease

144 i

145 -3

Figure 44 File operations structure

Internally, fpga represents each device with a structure of type struct fpga_Dev (Figure 45),
its components are described below.

22 [F] typedef struct {

33 struct cdev cdev; A**< Character device strusture embedded in device structure. */

84 woid *pFPGhiaddr; ¥+ Virtual address of FRSA. */F

28 int refoount; #**: Keeps the number of opened references to the device (opend files/nades in /dev falder), */
85 int irg: S**s Interrupt ling number. */

a7 char device name[10] ; S pame of the device representing it in the user space (both /dev and Aproc/driver): ex pscipl, pscipl... 7/
a8 pRrameters_t parameters; #7%e Ozciloscope parameters. *

82 unsigned inc crod 2

=1 unsigned intc state:; SF*e Status o+

=R unsigned int startiddr; A*#*< Start readout addr. *

S unsigned int stophddr; #**< Stop readout addr. */

93 unsigned int stardRDaddr ;

4. char databcquiredF lag;

85 unsigned int readout nuwber;

=5 unsigned int test_register;

a7 "} nfpga Dev, *fpgiDeV;

Figure 45 Structure which represents FPGA device.
Struct cdev
The kernel uses structures of type struct cdev to represent char devices internally. Before
the device’s operations can be invoked by the kernel, cdev structure must be allocated
and registered. The structure and its associated helper functions are defined
in <linux/cdev.h> which needs to be included in the driver's code. Since the cdev structure
is embedded within fpga_Dev structure, it is allocated using cdev_init() function.

Maciej Lipinski 51

Universal Measurement System with Web Interface

void *pFPGAaddr

A pointer to the beginning of virtual address of FPGA address space. This pointer is used
as a base address of all the I/O functions (read/write). It is obtained using ioremap_nocache
function.

int refcount
Keeps the number of opened references to the device. It is incremented each time
fpga_open function is called, and decremented each time fpga_release function is called.

char device name[10]
Name of the device, represents the driver in user space (/proc/drivers/fpga) and kernel space

parameters t parameters
A structure storing acquisition parameters (Figure 46).

et

T4 E typedef struct {

15 unsigned int recordlen; A Recard Length*/
76 unsigned int time: S timeS frequency */
i) unsigned 1int delay: & delay after trigger */
.0

79 © } parsmeters t:

Figure 46 Structure storing acquisition parameters

unsigned int cmd

unsigned int state

unsigned int startAddr

unsigned int stopAddr

unsigned int startRDaddr

char dataAcquiredFlag

unsigned int readout_number

unsigned int test_register

Variables which reflect the content of appropriate registers in the FPGA logic.

3.4.1.1 Debugging

During the driver’'s development debugging was done extensively. Kernel programming
brings its own, unique debugging challenges. Kernel code cannot be easily executed under
debugger, nor can it be easily traced, because it is a set of functionalities not related to
a specific process. Driver errors can bring down the entire system, thus destroying much
of the evidence that could be used to track them down.

printk
There are few ways to debug Linux Device Driver, the most commonly used (in general
and during development of fpga driver) is monitoring, which in applications’ programming
is done by calling printf at suitable points. In Kernel debugging, the same can be
accomplished using printk. The printk function behaves similarly to the standard C library
function printf. It is defined in Linux kernel. The kernel needs its own printing function
because it runs by itself, without the help of the C library. The kernel messages are
appended to /var/log/messages or printed to the current console.

During the development printk was very useful, however, in the final release
of the driver printing messages to the console or log file is unnecessary and unwanted.
On the other hand, printk functions can be found useful if a bug is detected or during further

Maciej Lipinski 52

Universal Measurement System with Web Interface

development of the driver is needed. Therefore, all the printk functions which were used for
debugging purposes, are included in the pre-processor #ifdef DEBUG condition and can be
enabled/disabled necessary.

/proc
Another technique used for debugging during the driver's development was querying

the system which can be done by creating a file in the /proc file system. It is a special,
software-created filesystem that is used by the kernel developers to export information
to the world. The content of the files under /proc is generated on the fly by functions tied
to each file.

This solution is heavily used in the Linux system by many utilities such as ps, top
and uptime to get their information. Some drivers export information via /proc. The /proc
filesystem can be very conveniently used with CGI scripts to export information from
the device and even control the device. Therefore, it is the fpga driver's main mean data
information exchange and control. This solution, however, has an important disadvantage,
which needs to be mentioned but does not overweight advantages. Adding files under /proc
is discouraged by the kernel developers as /proc fileystem is seen as “a bit of an uncontrolled
mess that has gone far beyond its original purpose” [30].

3.4.1.2 /proc filesystem

In order to create a read-write /proc file, the driver must implement two functions:
a function to produce the data when the file is read and a function to read and interpret
the data when a file is written to. When a process (application) reads from fpga driver’s /proc
file, the kernel allocates a page of memory. The data written to the page by the driver
in read-function, is returned to user space. The function presented in Figure 47 assumes
that there will never be a need to generate more than one page of data (it returns value
of one control register: 16 bits) and so ignores the start and offset values. All of proc_read
functions in fpga driver, but one, can be implemented in such a simple way, since the amount
of data returned by them is precisely known and is less than a page.

520 static int cwmd resad proc{char *page, char %%start, off t offset, int count, int #%eof, vold *datcs)

621 H{

622 asciloscope Dev dev = Lkosciloscope devices:

B3

624 int len = 0;

BZ 5 unsigned int cmwd:

B2 o #ifdef _ DEBUG

27 printk({KERN ALERT "DEEUG IM: cwd write- beginningin'):
B2 & i fendif

{epgs

630 IC0fpga read word{dev->pFPGladdr + CHD_ ADDR, Ecmd):
531 len += sprintf{page+len, "inzdin’, CMD MASE & cmd):
B3 Z -

533 [#ifdef DEBUG

B34 printk(EERN ALERT "DEEUG M: cmd write - endin'):
635 r #endif

B3 6 return len;

637 -3

Figure 47 Function which generates data when /proc/fpga/cmd file is read

The only exception is the function that returns the measurement data. The amount
of data returned is not constant, it depends on the acquisition parameters. It is very likely that
more than one page of data is returned. Thus implementation of multiple pages /proc file was
necessary. It was done using seq_file interface. This interface provides a set of functions
for implementation of large kernel virtual files. It assumes that the /proc virtual file steps

Maciej Lipinski 53

Universal Measurement System with Web Interface

through a sequence of items that must be returned to the user space, therefore, an “iterator”
object needs to be created. Seq_file needs four iterator methods called start, next, stop
and show.

The start function is always called first (Figure 48). It reads record length FPGA
register to find out how many double words is to be read. It also reads test FPGA register
to check whether the reading is performed in normal mode or in test mode. If a specific test
mode is on, the data is outputted in a special form. pos is an integer position indicating how
many double words have been read.

o

£* executed always at the beginning of the readout sequence. */
static readresult seq start{struct seq file *z3file, loff t #*pos)

| i

e F B o
oy
o

[R e}

=3

-1

unsigned int readCount:

M S e |

unsighed int readTest;

B [

osciloscope Dev dev = kosciloscope devices:

#ifdef DEBUG

printk({KERN ALERT "DEEUG M: readresult seg sStart N

#endif

Iofpga read Zwords{dev->=pFPGAaddr + REC LEN ADDER, &readCount}):;
dev->readout number = readCount:

IOfpga read word(dev-=pFPGAaddr + TEST ADDR, &readTest):
dev-»test register = readTest;

I
] —

')
bl

o R e |
=3 oy W

o]

')
{ SR O T W
(o B

jm}

if (*pos >= readCount || *pos »>= MAX RECORD LEN}) feheck i vou read all the data
return HULL:
return {1 + #*pos); #/posneeds fobe not MULL to work

o}
LR R 74

e e e S e e M B e T i e S e S i WA e
I___________________'".___'!_

o]
LR

(i)

}
Figure 48 Implementation of start method in the seq_file interface

The next function should move the iterator to the next position (Figure 49). It increments
the pos variable and checks it against the expected number of words to be read. It returns
NULL if there is nothing left in the sequence.

static void *readresult seq next{struct seq file %=, wvoid #*v, loff t *pos)

{

#ifdef _ DEBUG__

printk(KERN ALERT "DEBUG M: readresult seq next Sn"):

Hendif

{*posh++:

if (*pos »= osciloscope devices.readout nunber || *pos »>= MAX RECORD_LEMN) A eheck if you read all the data
return HULL:

return {1 + *pos);

susTiBTTITE S

Figure 49 Implementatin of seq_next

When all the acquired data is read and the kernel is done with the iterator, it calls stop
function. There is no action required in fpga driver implementation, so the function is empty.
In between these calls, the kernel calls show (Figure 50) method to output measurement
data to the user space. This method creates output for the item in the sequence. It uses
special function for seq_file output (seq_printf). The show function reads two words (16bits).
It performs two consecutive accesses to the address of readout register. Each access
increments the SSRAM address counter in FPGA logic. One call to show function causes
one SSRAM word (32bits) to be read. Each SSRAM word consist of the measurement
from 2 ADCs.

Maciej Lipinski 54

Universal Measurement System with Web Interface

LO5] /% creates data sent to user spoce *4

1052 gtatic int readresult seq show{struct seq file *s3, woid #wv)
o3 BHi

1o54 osciloscope Dev dew = &oscilozcope devices;

Lix55 gigned int first word;

1056 gigned int second word;

1057 Figmed int woltage 1;

L5 signed int woltage Z;

LOs% int * number = {int *} w;

losod [H #ifdef DEBUG_

HET R printk (KEFN ALERT "DEBUG M: readresult sedq show \n');

logs B #endif

13 #Aread from device

10s4 I0fpya read word{dew->pFPGhaddr + DATA ADDE, &first word);
1065 I0fpga read word{dew-=pFPGiaddr + DATA ADDR, &second word);
TOGEE Afcalculate voltage in mb!

LO&7

LOGE woltage 1 = (LOOO & WPP & [0 & {first word - S1z))FLO024;
1069 woltage 2 = (| | & YRR & 1000 & {zecond word - S1ap)FI024;
1a3a

107

1072 woltage 1 = woltage 1F1000;

1073 woltage £ = woltage 2F 1000;

1074 #/show to the user

LO7 5

1076 1if{TEST 0ON MASK & {(dev-=test register))

1007 gedq printfis, "Ox%x == Oxi: Ouswin’,mmber,first word,second word):
1875 else

10 geq printf{s, "%d; Fd\n”,woltage l,voltage Z);

10EH

gl H #ifdef DEEBUG

Logz printk (EERN ALERT "DEEUG M: readresult sedq show - end hn"):
LOE3 I #endit

1054

LOEs el

Figure 50 seq_file show method which outputs measurement data to user space

The data read from SSRAM is in Binary Offset format, which is determined by the ADC's
hardware mode setting. To make the driver universal and user-friendly, it was decided that
the output format of the data should be readable. Since only natural numbers are allowed
in device drivers, and the resolution of ADCs is approximately ImV (10 bits and 1ppV gives
1000mv/1024), it was decided to output data in milivotls. The show function performs
the necessary conversation. To make SSRAM testing more convenient, the data is outputted
in the hex format during test mode.

All the iterator operations (start,stop, next, show functions) are packaged
up and connected to a file in /proc by filling in a seq_operations structure (Figure 51)
and creating a file implementation. The connection to /proc is made creating file operations
structure (Figure 52) and necessary open method (Figure 53), which connects the file to
the seq_file operations.

Maciej Lipinski 55

Universal Measurement System with Web Interface

165 [#** Used for packaging set of the interior operations of seq_file interface.

LG

LE7 R

158 [F] static struct gsedq operatiohs readresult seq ops = f
163 .3LAart = readresult seq start,

170 LNEXT = readresult seq next,

TS .2top = readresult seq stop,

173 . show = readresult seq show

173 g

Figure 51 Seq_operations structure
153 [E #** File operation strocture.

154 Defings sequence operations - used in seq_fig interfoce
155 seq_file interfoce is to read large procFs files

Lo

150 i

155 [o] static struct file operations readresult proc_ops = f
159 . OWNET = THIS MODULE,

1ed . Open = readresult proc_open,
1al .read = 3gedq_read,

152 .1llzeek = geq lseek,

i .release = geq _releasze

164 - 4;

Figure 52 File operations structure

1oa7 4% Connects the file structure with our sequence operations */

1088 static int readresult proc_open{struct inode #*inode, struct £ile *#£ile)
S | {

1020 é] #ifdef DEEBUG

1011 printk {KEEN ALERT "DEEBTUG M: readresult proc open 'Yn');

Iolz i #endif

i return seq open{file, &readresult sedq ops);

1014 ¥ }

Figure 53 Proc open method

The FPGA logic (i.e acquisition) can be controlled by writing appropriate data to /proc
files. This is possible by binding write_proc functions with /proc files. Figure 54 presents
implementation of function called when /proc/fpga/cmd file is read.

595 static int cmd write proc{struct file *filp, const char *buffer, unsigned long count, woid *data)
295 4

bats T o3ciloscope Dewv dev = &osciloscope_dewvices:

505 unsigned int cmd:

534

600 & #ifdef _ DEBUG

501 printk {KERN_ALERT "DEEUG M: cmd write- beginhingin™);

&02 = #endif

BOF

504 sscanf (buffer, "\oidin” &cmd); /Afget dota from the user

G5

G5 dev->cmd = CMD_MASE & cmd; /ffilter dato

607

EEE I0fpga write word{dev->pFPGhaddr + CHMD_ADDR, CMD Ma3K & cmd): hwrite to FPGA
G0

gl & #ifdef _ DEBUG

511 printk {KERN_ALERT "DEEUL M: cmd write - endin”);

L3 - #endif

(= B return count;

61a Ly

Figure 54 Implementation of write_proc function

Maciej Lipinski 56

Universal Measurement System with Web Interface

buffer is a pointer to a page of data retrieved from user space. This data is read and
interpreted by the function. Then appropriate hardware access is performed.

All the read_proc and write_proc functions need to be connected to entries in the /proc
hierarchy using. This is done in procfs_register function (Figure 55). In the first place, the
function allocates memory for the proc device data structure which is used to pass
information between read_proc and write_proc of readXwords /proc entry. Then the
appropriate /proc path is created (/proc/driver/fpga) and registred. Finally, all the /proc entries
are connected to appropriate functions (read_proc and/or write_proc accordingly).
As an example, Figure 55 presents how cmd /proc entry is bound with appropriate functions.

e L o

1596 Register-proc filesystem entries. It creates the appropriote directory’in Aproc/drivers and fills it with nodes representing each TR
1397 Ttrregisters functions implemented for proc_fs interfoce

1398 sk

13932 static int fpga procfs register(woid)

Laos B A

1401 struct proc_dir_entry #*procfs file cmd;

1402 atruct proc_dir entry *procfs file state;

1405 struct proc_dir_entry #*procfs file datakcoquired;
1404 atruct proc_dir_entry *procfs file reset;

1405 struct proc_dir entry *procfs file params;

1405 struct proc_dir_entry *procfs file paddr;

1407 struct proc_dir_entry *procfs_ file startRDaddr;

140G struct proc_dir_entry #*procfs file readiinglelata;
1409 struct proc_dir entry *procfs file readiwords:

1410 atruct proc_dir_entry #*procfs file readxwords;

1AL atruct proc_dir_entry *procfs file readresult:

1412 struct proc_dir_entry *procfs file config;

1413 atruct proc_dir_ entry *procfa file info:

1414 struct proc_dir_entry *procfs file test:

1415 struct proc_dir_entry #*procfs file trig lewvel:

14lg struct proc_dir entry *procfaz_file fpga;

1417

1418 char root dir[30]="driver”, model dir[30]:

1413 char module name[30]="fpga'; #fmodule directory

1420

14zl H #ifdef _ DEEUG

1422 printk {KERN ALERT "DEBUG M: pscip procfs register - begimninghn™):
1423 = #endif

1dzd /4 allocate proc device data structure

1425 fpga procdew = kmalloc({sizeof{nfpea Proc), GFP_EEENEL):
14265 if (!fpga procdev)

1azg goto err kmalloc:

lazs memset{fpga_procdev, 0, sizeof(nofpga Proch);

14258 Alcreate dir path

1430 sprintf{madel dir,"%s,/%2" ,root_dir,module name);
1431

143z H #ifdef _ DEEUG

1453 printk {FKEEN ALERT "DEEUG M: model dir: %s'\n"”, model dir}:
1434 P #endif

1435 44 register proc entry under driver!! entry

1436 proc_model dif = proc_mkdir{model dir, HULL):
1457 if {proc_model dir = HULL)

14358 goto err proc mkdir:

14z0 Ademd

1448 procfs file cmd = create proc_entry{"cwd”, 5 IRUGO|S_IWUSE, proc_model dir):
1441 if {procfs_file cmd = HULL}

144z [{

1443 remove proc_entry{model dir, HULL):

1444 goto err create proc_entry;

1445 = }

1448 procfs file cmd-»write_proc = cmd write proc;
1447 procfs file cmd-rread proc = cmd read proe:

718 | return -ENOMEM:

s |

Bl n

Figure 55 procfs_register function

Maciej Lipinski 57

Universal Measurement System with Web Interface

3.4.1.3 octl

Most drivers implement ioctl system call, which supports user space requests
via the ioctl method. In the user space, the ioctl system call have the following prototype:

int ioctl(int fd, unsigned long cmd, ...)

The dots in the prototype represent a single optional argument. In fpga driver
implementation, a pointer to a structure is mostly used since it enables to exchange any
amount of data with user space. The driver's header file defines structures which are passed
to the ioctl system call as the third argument. User programs must include that header file
to control the driver. The header defines also symbolic names representing commands’
numbers. Figure 56 presents an example implementation of ioctl command called “cmd”.
loctl commands need to copy data to or from the user address space. It is done by
the following kernel functions, which copy an arbitrary array of bytes and sit at the heart
of the ioctl implementation.

unsigned long copy_to_user(void __user *to, const void *from, unsigned long count);
unsigned long copy_from_user(void *to, const void __user *from, unsigned long count);

The usage of these functions can be seen in cmd implementation on Figure 56.
In CMD_WRITE, the data (number representing a command) is copied from the user-space
and written to the hardware. In CMD_READ, the data is read from the hardware, filtered
and copied to the user-space. This schema is repeated with the implementation of the other
ioctl command.

Maciej Lipinski 58

Universal Measurement System with Web Interface

246 [#

247 Used to read-write IA0 operations and IF configuration

245

249 @param *inods - contains cdev structure, allows to.get our device structurs

250 Eparam *filp - pointer to g file structure

251 @parram cmd - command fo be executed

257 Eparam arg - data passed from#to kernsl space

253

254 el

255 static int fpga ioctl{struct inode *inode,struct file *filp,unsigned int cmd, unsiomed long arg)
o e |

Z57 zingleReq t singleRegq:

258 parameters £ parameters:

259 dataxz t datakz;

260 dats £ datal;

261 intio= 0;

262 unsigned int rdDatar

263 unsigned int count;

264 osciloscope_Dew dew = filp-Fprivate_data;

265

e [#ifdef _ DEBUG

26T printk{KERN ALERT "DEBUG M: nsciloscope_ioctl() begibmic Yu"k;

Z2RE ~ #endif

269

270 switch {(cmd)

271 = {

277 Adrite command (ARM, Trigger)

273 : case CMD_WEITE :

274 :

= #ifdef _ DEBUG

235 : printk{KERN ALERT "DEBUG M: --%& CMD writing -beginninght--‘n"k:
277 5 £ #endif

278 i i if {(copy from user (&singleReg, {vold *) arg, sizeof (singleReg t)))
2 i {

2B ; . return (-EFLULT):

281 E : }

282 :

283 : singleReg.data = [x0Z5 & singleReg.data;

284 : I0fpga write word{dew-pFPGhaddr + CHMD_ADDE, OxFFFF & singleReg.data)):
288 i

zes [: #ifdef _ DEBUG

287 E printk{KEEN_ALERT "DEEUG M: --%& CMD writing -finished\t--tn"):
2EE K : #endit

268 .

290 ; break;

281

287 ## Read commands (aARM, Trigger)

293 : case CMD_FEAD :

284 :

za8 & E #ifdef DEBUG

295 : printk (KEEN ALERT "LEEUG M: --t CHD reading -begifmingit--%n");
297 r : #endif

295

2589 : IDfpga read word{dev-»=pFPGAaddr + CMD_ADDE, &singleReq.data):
SO0 . singleReg.data = Ox00E28 & singlePeg.datary Affilter out only command

301 if {(copy to_user {{voidk) arg, &singleRey, sizeof {singleReg th))
a2z B : {

303 £ E return {-EFAULT);

304 r : }

305 :

306 = : #ifdef _ DEEUG

307 . printk (KERN ALERT "DEEUG M: --%t CMD Reading -finishedhit--‘n"):
s08 : #endif

303

310 : break;

SEl break;

SEZ default:

583 return -EINVAL;

S84 r }

585 =] #ifdef _ DEBUG

586 printk (KERN ALERT "DEEUG M: osciloscope_icctl{) end \n“):

587 P #endif

SEG return 0;

Figure 56 ioctl driver method

Maciej Lipinski

Universal Measurement System with Web Interface

/proc and ioctl functionality

/proc file entries and ioctl commands implemented by fpga driver provide the same
functionality. Therefore, both can be used interchangeably. Table 8 presents the driver’s
interface (/proc and ioctl). loctl's third argument is a pointer to data structure, depending
on the command, 5 different data structures are used to exchange data between user-space
and the driver. The structures are presented in Figure 57 .

(et
G
ag
It
9z
23

g4

05

S

g5

/* joctl data struct */
=] typedef stcruct {
unsigned int

-} singleReqg_t:

=] typedef struct {
unsigned int
unsigned int
unsigned int

- } parameters t;

Il
Ll

typedef struct {
unsigned int
unsigned int

} datakz £

—| typedef struct {
unsigned int
unsigned int

L

-} fpga t;

—| typedef struct {
unsigned int
unsigned int
unsigned int

i

-} dataX t;

data; /* CMD, status, addressas™F

recordLen;
time;
delay:;

datal;
dataz;

addr;
data;

datal [1=107

dataz[13107

Coumnt;

/* Record Length*/
A% timedfrequency */
4% delay after frigger +4

A* lower address data +/

#* higher address data*/

2* address */

#* data*/
2): 44 dota arpoy 128%1024
2 44 data array 128%1024

A number of valid data

Figure 57 ioctl data structures

The driver interface is divided into:
e general purpose — can be used to access FPGA with any configuration, prepared
for custom-made configuration,

* FPGA control logic specific — specific for the control logic implemented in FPGA,
» oscilloscope specific — for oscilloscope/spectrum analyzer implementation.

Maciej Lipinski

60

Command name

loctl

Iproc filesystem

loctl command Arg File mane format R/W Example commands
Reset RESET - reset 1 w Echo 1 > reset
r/w Addr data Echo w 0x220 0x33 > fpga
General FPGA access FPGA Fpoga_t fpga R/W
(hex) Cat fpga
) CONFIG_READ)) Number) Ext. trigger, rising slope,
Configure singleReg_t Config . R/W | Echo 1 > config o .
CONFIG_WRITE (decimal) sampling time disabled
CMD_READ Echo 16 > cmd ARM
Command singleReg_t cmd R/W | Echo 32 >cmd TRIGGER
CMD_WRITE Echo 48 >cmd ARM & TRIGGER
Cat state
) 1 Data acquired
Status STATE_READ singleReg_t state R
2 ARMED
3 Data acquired and armed
PARAM_READ Len:time:delay
Parameters Parameters_t parameters) R/W | Echo 20:0:0 > parameters
PARAM_WRITE (decimals)
] START_RD_ADDR_READ]
Custom start read address pointer singleReg_t startRDaddr startAddr (hex) R/W | Echo 200 > startRDaddr
START_RD_ADDR_WRITE
. . StartAddr stopAddr
Address pointers (start & stop) ADDR_POINTERS_READ datax2_t addressPointers (hex) R 200 500
ex
Oxdata
Read single data DATA_1_READ singleReg_t readSingleData) R Cat readSingleData
(no converstion, hex)
Voltage_ADC_1
Read two words (one SSRAM word) DATA_2_READ datax2_t read2words Voltage_ADC_2 R Cat read2words
(converted, decimal, [mV])
Volt_adcl, volt_adc2 Echo 20 > readXwords
Read x SSRAM words DATA_X_READ datax_t readXwords) R/W
(converted, decimal, [mV]) Cat readXwords
) Volt_adcl, volt_adc2
Read entire measurement data readresult . R Cat readresult
(converted, decimal, [mV])
) Echo 21 > test
Test TEST singleReg test R/W

Cat test

Table 9 ioctl/proc interface

3.4.2 Physical layer

Physical layer comprises of the function which are hardware dependent. In particular

there are two kinds of such functions:

* Read/write,

e Hardware configuration and memory mapping.
Read/write functions are wrappers of special kernel I/O memory access functions (provided
via <asm/io.h>). Read/write wrappers enable to abstract physical layer from logical layer.
During development they allowed to test various hardware access solutions without changing
logical layer. Read/write wrappers implement the specific types of I/O access which
are needed in logical layer, namely:

* Read/write 16 bits from/to FPGA

¢ Read/write 32 bits from/to FPGA

¢ Read/write 32 bits from/to ARM SMC register
All the wrapper functions embed debugging facilities and memory barriers which prevent
compiler optimization.

Since the data bus width between ARM and FPGA is 16 bits, 32-bit access to FPGA
is performed as two 16-bit accesses. Moreover, due to hardware problems, the least
significant byte of the address is ignored, when addressing control registers. Therefore,
32-bit access to FPGA is implemented in the following way (Figure 58):

o] woid IO0fpga read Zwords{wvoid *address, unsigned int #%wval)
500 B4
unsigned int temp:

T
|
|
|
53 | *val = ioreadlé{address);
54 | temp = ioreadl6{address + O0x10);
55 E *yml = dval + {(cemp << 16} ;
56 | rmb{) ;
SO |
5B B #ifdef DEBUG
53 E printk{EEFN ALERT e S DEBUG K: loresddz (Oxtx, Ox%=)\n" {unsigned int)address, {unsigned int)*wval):
&l r fendif
&1 i 3
B2 wvoid Iofpga write Zwords{wvoid *address, unsigned int val)

{

iowriteld{ {(OxFFFF & wal}) ,address);:

65 iowritel6{ (O=FFFF &{wval >» 16)},address + Oxl0);

66 rrb{}) ;

a7

&8 #ifdef _ DEBUG

63 printk{KERN ALERT "% t%t DEBUG K: ig 232 (O0xsx, Oxix) Yn",{unsigned intyaddress, {(unsigned int)wal);

7o

printk{KERN ALERT "itht addr &s int: 3din”,{int)address);

#endif

L e)

Figure 58 2 words (32-bits) FPGA 10 functions

The functions presented on Figure 58 are used, for example, when accessing acquisition
parameters (sample length, sampling time, trigger delay). These parameters are more than
16-bit wide, thus they are stored in two consecutive control registers. However, only one
wrapper function needs to be used to read their value (Figure 59).

405 |

G E Iofpga read Zwords({dev->pFPGhiaddr + REC LEN ADDR, ¶meters.recordLen);
407 E Iofpga read Zwords(dev->pFPGladdr + TIMNE ADDR, &parsmeters.time);

qos E Iofpga read Zwords(dev->pFPGAladdr + DELAY ADDR, ¶meters.delay);

Figure 59 Using FPGA IO functions

Universal Measurement System with Web Interface

On the other hand, the wrapper function which is used for setting configuration registers
in ARM can access 32 bits at once. Therefore, the implementation is much simpler (Figure
60).

63 void reg read{wvoid *address, unsigned int #*val)

g4 o

65 | #*val = ioread3Z(address):

g6 | ruo() ;

87 #ifdef _ DEBUG

=) : printk(KERN ALERT ™\tit DEBUG ¥: ioread32 (Ox%x, Oxix)in",(unsigned int){address), *val):
=R #endif

2 by

o

7z void reg write{woid *address, unsigned int wval)

7 BHA
74 | iowrite3dz{val ,address) ;
g) 2

#ifdef _ DEBUG__

i)

76

i printk({KERN ALERT "ith%t DEBUG K: dowrite3Z (Oxix, Oxix) Yo", {unsigned int){address), {unsigned int)wal):

7w #endif
FEN oy

Figure 60 Implementation of read/write ARM register functions

The main task of configuration and memory mapping function are
» Map control registers of External Bus Interface (EBI) User Interface, Static Memory
Controller (SMC) and Power Management Controller (PMC) into virtual address
space,
» initialize EBI, SMC and PMC with appropriate parameters,
« map I/O physical address into virtual address space.
The EBI Chip Select Assignment Register is used to determine to which Chip Select pin
the FPGA is connected. FPGA address bus and data bus are connected to Static Memory
Controller(SMC). SMC controls access to external static memory and peripheral devices.
It is fully programmable by setting appropriate parameters in the SMC Chip Select Register
(Table 10). The frequency on which SMC works is set by writing PMC Programmable Clock
Register (PMC_PCK) and PMC System Clock Enable Register (PMC_SCER).

Maciej Lipinski 63

Universal Measurement System with Web Interface

Name Description Value SMC setting

Data width Determines data bus width 16 bits DBW =1

External bus is marked occupied and
Data float time cannot be used by another chip select 0 TDF =0
during TDF cycles

Used if data width is 16 or 32 bits,
defines whether chip select line is
connected to two/four 8-bit wide devices
or one 16 bit wide device

Byte access type BAT =0

Enables/disables wait states (additional
Wait select enable cycles during which NWE/NOE pulse is | enabled WSEN =1
held low)

Defines the read (NOE) and write
Number of wait states | (NWE) signal pulse length from 1 cycle 1 NWS =1
to 128 cycles

Data read protocol Standard or Early Read Protocol Standard DRP =0

Time between the moment when

Setup delay address is available on the bus and | 1 cycle RWSElTUP -
write/read enable pulse is set.
Hold delay Length of the read/write enable pulse 1 cycle RWH(l)LD -

Table 10 SMC configuration

3.5 Binding Web Interface to Device Driver with CGI

The communication between applet and hardware (more precisely Linux Device Driver)
is performed using Common Gate Interface (CGl).

“CGl is the part of the Web server that can communicate with other programs
running on the server. With CGI, the Web server can call up a program, while
passing user-specific data to the program (such as what host the user
is connecting from, or input the user has supplied using HTML form syntax).
The program then processes that data and the server passes the program's
response back to the Web browser” [3].

Maciej Lipinski 64

Universal Measurement System with Web Interface

A short explanation how CGI scripts work is included Appendix A: 2.3. Table 11 presents
structure of CGI requests.

Action GET request send by the applet to the server
Read from hardware /cgi-bin/oscilloscopel/get_name_.cgi
Write to hardware /cgi-bin/oscilloscope/get_name_.cg?param_value

Table 11 GET requests: _name__is the name of hardware parameter [31].

In Universal Measurement System with Web Interface CGI is used in a non-standard
way. It is called from the applet application and the output is never shown to the user directly.
It is either ignored (when data is send to the hardware) or stored in applet variable for further
processing. The applet provides special universal functions to read/write data from/to
hardware. Such functions create appropriate requests to the server, send them and read
the answer. The method used to pass the data to the server is GET. Since GET is used,
server stores the argument of the request (everything after “?") in environmental variable
QUERY_STRING which can be read in the script. Example “get” and “set” scripts
are presented in Figure 61, detailed description is also provided.

setparameters.cgi getparameters.cgi
#l/bin/ash #l/binfash
echo "Content-type: text/html" echo "Content-type: text/html"
Echo echo
param=$QUERY_STRING cat /proc/driver/osciloscope/parameters
echo $param > /proc/driver/osciloscope/parameters
cat /proc/driver/csciloscope/parameters

~i

The first line of the program is very important. It
tells the server to run the ash interpreter located

in /bin to execute the script ~~[Hi/bin/ash Information about the output of the script which is
echo "Content-type: text/html" = passed to web browser
Output after the header. This is because HTTP ~<#——]&cho |
requires a blank line between the header and Environmental variable stores the value which
body. param=$QUERY_STRING i—" occures in the call after question mark *?". The value

- . is stored in variable parameter
Setting is written to the virtual file implementing ~<@=——{&cho $param > /proc/driverfosciloscope/parameters

driver interface New setting i
, i g is read from the hardware and sent to
cat /proc/driver/osciloscope/parameters i—-b i Bppiet ik varkEatiorn

Figure 61 Example CGI scripts with a detailed description [31].

3.6 Web Interface

The Web Interface of Universal Measurement System with Web Interface is based on

a simple website which enables to navigate through the utilities provided by UMSWI:

* UMSWI system management and configuration interface (Java Script),

» Oscilloscope and Spectrum Analyzer Graphic User Interface (Java Applet),

* Information about the project,

e Manuals (including example scripts in Matlab).
The layout of the website is meant to be simple and intuitive. The structure of UMSWI’s web
page and its layout is presented in Figure 62 .

Maciej Lipinski 65

Universal Measurement System with Web Interface

Title

Menu ==

i Universal Measurement
Sy nfg ‘ System with Web Interface

about Menu ===
choice

Main
content

Main Page Project Info UMSWI Config Oscilloscope Scope Manual SCPI Manual Links

SCPI Server

MatLab HOWTO g, ¢onsi0n HOWTO

Figure 62 Design of UMSWI web site layout and structure.

The website employs Cascading Style Sheets (CSS) [46] to separate the presentation layer
from the document’s structure and content. Using CSS makes development of the website
easier in terms of presentation consistency and its changes, since visual effects of entire
website (all the web pages) can be controlled from one location: myStyleSheet.css
document. The style sheet document is imported by all the web pages of the website.
If the look of the website’s pages need changes, modification in myStyleSheet.css
is propagated throughout the entire server — automatically. CSS makes also development
of new pages much easier, since import of the style sheet document by the new web page
makes its “look and feel” identical as the rest of the rest of the website. The drawback
of the CSS is its inconsistent browser support. Therefore, special attention needs to be paid
to test the website in various browsers and, if necessary, implement so-called CSS “hacks”
to achieve consistent layout among different browsers. However, this drawback is a minor
problem for UMSW!I’s website because it's layout is not sophisticated,.

There is a developer’'s website of UMSWI on the authors home page [47]. It provide an
extended version of the website which is available on UMSWI. The extension include
sections which provides HOWTO including detailed description about system development,
source codes, binaries and information how to use them.

3.6.1 Oscilloscope and Spectrum Analyzer GUI

Oscilloscope and Spectrum Analyzer GUI is implemented as Java Applet designed
according to Model-View-Controller (MVC) paradigm [61]. One of the methods
of implementing MVC in Java is the Observer-Observable pattern, which is described
in Appendix A: 3.3 . It was decided that the Observer-Observable pattern would be used
in relation between model and view. Thus, the model implements observable and all
the views implements observer interface. If a model parameter is updated, all the registered

Maciej Lipinski 66

Universal Measurement System with Web Interface

observers are notified. The following constraints were established for the applet’s design,
which is presented in Figure 63:

All the parameters representing hardware and view settings are stored in the model
(only),

The main model (DevModel) is a holder of oscilloscope (OscilloscopeModel) and
spectrum analyzer (AnalyzerModel) models,

DevModel implements observable, and creates an interface to access
OscilloscopeModel and AnalyzerModel which does not implement observable,
DevModel accesses hardware though Fpgauitils,

FpgaUtils class is used to interface hardware and does not store any parameters
(unless in offline mode),

To minimize transfer between client and server, hardware parameters are set only
when the oscilloscope is being armed (the acquisition is started),

Views implement observer interface,

Different panels of Control Panel are implemented as independent observers (called
control widgets)

Action Listeners of
view objects

Control

ControlPanelGUI devModel
oscilloscope
Model
analyzer
Model

View | Model

screenWidget

esmlp| fpgaUtils

Ethernet

Figure 63 MVC implementation design

3.6.1.1 Model

Figure 64 presents simple UML class diagram of classes which constituted Model and

classes associated with it.

Figure 64 Class diagram of Model related classes

Maciej Lipinski 67

Universal Measurement System with Web Interface

Device Model (class DevModel)
The DevModel class is the main Model class which takes the role of a container of the other
model classes. Each device (oscilloscope, spectrum analyzer,....) is represented by its own
class that implements functions specific to that device. However, View & Controller
components of MVC architecture interface only DevModel and have no knowledge
of the other classes. It means that all the methods of OscilloscopeModel or AnalzyerModel
which need to be called by View or Controller need to be represented in DevModel.
Only DevModel implements observable, thus it is responsible for notifying observers about
parameters changes. This class manages also communication with hardware
(through FpgaUtils) and stores hardware parameters as well as the attributes representing
device state. In order to eliminate unnecessary communication between the client
and the server, changes of hardware parameters made by the user on the Control Panel are
not instantly followed by writing new parameters to the device. The hardware parameters
are sent to the device, only before the acquisition is started. Once the acquisition is finished,
the hardware parameters are read from the device and saved in variables representing
hardware setting during the latest data acquisition. Also the raw data from the device
is saved in the Model. It means that DevModel stores two representations of hardware
settings:

e Hardware parameters to be written to the device when the acquisition is started, they

determine the settings of a new acquisition

* Hardware parameters which were set when the latest acquisition took place.
Such solution solves the problem of using device by multiple clients or from multiple
browsers. However, it does not solve the concurrency problem (when two measurements are
done from different clients simultaneously). Since the parameters are set just before data
acquisition is started, each client can set different parameters and change it independently.

Oscilloscope Model (class OscilloscopeModel)
It holds all the parameters representing view settings of the oscilloscope (i.e. time/div,
volt/div, x-axis & y-axis start positions of the signal) and implements methods used
for calculations connected with oscilloscope display. The View is only displaying data
and perform no calculation. It is OscilloscopeModel class responsibility to provide View with
positions in which data needs to be displayed on the screen (screen vectors). Model
implements functions which perform the following actions:

e Calculate screen vectors according to current display settings (time/div, volts/div),

* Retrieve current screen vectors,

+ Calculate distance between “ticks”,

e Set and get values of all the display parameters.

Analyzer Model (class AnalyzerModel)
It holds all the parameters representing view settings of the spectrum analyzer (i.e. freg/div,
spectrum start position), instantiates class responsible for FFT calculation and implements
methods used for calculations connected with spectrum display. The View is only displaying
data and perform no calculation. It is AnalyzerModel class responsibility to provide View with
positions in which data needs to be displayed on the screen (screen vectors) and scaling
factors to print appropriate scales on the display margins. Analyzer model implements
methods which perform the following actions:

« Prepare data for FFT calculation, instantiates FastFourierTransform object and uses

it to calculate FFT on the prepared data and returns the spectrum,
« Look for spectrum maximum value (used for scaling view and scales)
e Calculate spectrum scales,

Maciej Lipinski 68

Universal Measurement System with Web Interface

e Convert spectrum to decibels,

e Calculate screen vectors for spectrum (in volts and decibels),
¢ Look for maximum spectrum frequency,

» Set and get screen parameters.

Fast Fourier Transform (class FastFourierTransform)
The FFT algorithm was not implemented by the author. Open source implementation
by Tsan-Kuang Lee from University of Pennsylvania is used [48].

Check Device State (class CheckDevState)
This class implements Runnable interface which enables its instances to be executed
by a thread. The thread is started when acquisition is initiated (pressing : “SINGLE”,
“NORMAL" or “AUTQO"). The task of CheckDevState depends on the “mode” of acquisition
and trigger type:
e AUTO mode - it triggers acquisition, checks device state until the data is ready
for readout, calls readout function and re-starts the cycle (triggering acquisition),
¢ SINGLE or NORMAL modes
0 User-defined trigger — checks whether the “Trigger” button was pressed, once
the button has been pressed, it triggers acquisition, checks device state until
the data is ready for readout, calls readout function and stops acquisition
(and re-starts the cycle),
0 Channel or external trigger — checks device state until the data is ready
for readout, calls readout function and stops acquisition (in SINGLE mode)
or repeats the cycle (in NORMAL mode).

FPGA Utilities (class Fpgautils)
The class implements communication with hardware through CGI scripts. This class provides
two kinds of methods:
e Universal hardware set/get methods which enables to call any CGI script on
the server,
« Oscilloscope implementation specific methods which enables to set/get acquisition
parameters — they use universal methods in their bodies.
The communication, in universal hardware get/set methods, is implemented using HTTP
Tunneling and GET requests described in [49]. They allows to communicate with the server
through HTTP socket connection on port 80. This way, the firewalls can be bypassed
and server-side programs do not have to return complete HTML documents, instead only
data can be returned. The limitations to this method include the fact that the requests
responses are received by the applet directly, not the browser and the only server the applet
can tunnel to, is the server from which the applet was downloaded. The limitations
are acceptable for the methods implementation in UMSWI.

An example FpgaUtils method enabling to get data from hardware is presented
in Figure 65. The method uses URLConnection class provided by java.net. package.
The class contains methods which enable to communicate with URL over the network from
the applet.

Maciej Lipinski 69

Universal Measurement System with Web Interface

190 private 3tring getHardwareSetting(3tring what){

191 if (OFFLINE] { Flapplet in offline mode

192 return "00";

193 telse{ SFHTTP Tunneling and GET Recquests
194 URLConnection connection = null;

195 String protocol = currentPage.getProtocol(): //gecs the protocol name of the URL from which
186 //applet vas donwloaded

EHER String host = currentPage.getHost (]! ffugecs hosts address

198 int port = currentPage.getPorti(); ffgets port number

199 String scriptNawe="get”™ + what + ".ogl™; fiereating http reqgurest adres
Z00 String url3uffix = "/egi-bindoscilloscope/™ + scriptiame; ficreating http requrest sdres
Zot java.net.URL dataURL = null;

202 try {

203 datalRL = new java.net,.URL(protocol, host, port, url8uffix)://creating URL object referring to applet's host
204 } catch (MalforwedURLException e)

208 e.printitackTrace (]

208 2

07 try {

208 connection = datalURL.openConnection() fiCreating URLConnection chiject
2069 connection. setlseCaches (false) ; ffInstructing browser not to gache URL data
210 contection. setRegquestProperty (Theader™, Mwalue™) Jffsecting HTTP headers

Friza } catch (IOException e)

21z e.print3tackTrace ()

213 i

214 BufferedBeader in = null:

218 try {

Zla in = new BufferedReader (new InputitreamReader

247 (connection.getInputStresmi))] //ereating an input stresm

218 } eatch (IOException e)

219 e.printStackTrace (]

220 }

221 String line = new Stringi);

222 String output = mew String():

223 try {

224 while [{line=in.readline ()} '=null){ #/reading data from the serwver
228 ocutput=ocutput + line + ":"; ffereating wethods output string
2886 +

227 } catch (ICQException e}

228 e.printdtackTrace ()

229 ¥

230 try {

231 in.close () : ffelosing input stresm

232 } catch (ICException e)] {

233 e.printitackTrace (]

234 %

235 return output.substring(0, output.lengthi)-1);: ffcutting out 1ast

2348 }

Figure 65 Implementation of HTTP Tunnelling and GET requests

method responsible for setting data to the hardware is very similar to the get method.
main difference is the parameter passed in the URL address (Figure 66)

String scriptMName="set™ 4+ what + ".cgi?"+input;

3tring url3uffix = "Sogi-binfoscilloscope/" + scriptName:

Figure 66 Forming URL request which sends parameter to the hardware

FpgaUtils enables the applet to be used offline. The applet is offline, if it has no access
to CGl scripts. Such situation happens when it is not run from the target machine
(i.e. in Eclipse’s Applet Viewer). FpgaUtils implements function which automatically, during
its initialization, checks whether the applet is offline/online. In offline condition,
communication with hardware is simulated. All the hardware parameters are written
to variables instead of writing them to hardware. Consequently, parameters are read from
the variables rather than from hardware. The measurement data, instead of being read
from the hardware, is generated by a WaveGenerator class. Such solution was designed to
make the development easier and faster by enabling running the applet in Applet Viewer
or on authors homepage[47].

Wave Generator (class WaveGenerator)

Generates sine, cosine, triangle, square and sawtooth waveforms with user-defined
parameters (frequency, amplitude, sampling rate, DClevel). Source: [48]

Maciej Lipinski 70

Universal Measurement System with Web Interface

3.6.1.2 View

The applet was initially design to be an oscilloscope only, therefore it attempts
to resemble a traditional oscilloscope front panel. The graphic user interface is divided into
a screen widget (OscilloscopeScreen) and a control panel (controlPannelGUI). The screen
IS meant to present acquired data according to view settings. The control panel enables
to change the device state, display device parameters and adjust two kinds of settings:

* Hardware settings — parameters which can be used to control acquisition logic

(sampling time, trigger delay, trigger source, record length, trigger level),
« Display settings — parameters which control the way data is displayed and whether
it is displayed (Volts/Div, Time/Div, Freq/Div, enable chanl/chan2),
Throughout the applet’'s development, the GUI look evolved. The changes were caused
by the user feedback and addition of functionalities to the applet, i.e. the spectrum analyzer
was added in the final state of applet’s development. The newest version of the applet was
(and still is) available on the author's home page [47]. Since the applet is designed to work
“offline”, it could be put on the faculty’s server and tested by users.
The addition of the functionalities was based on users feedback and project requirements
(spectrum analyzer). The final GUI design is presented in Figure 67. Since some functions
are not used during the normal applet usage and due to the space limitations, an auxiliary
panel displayed in a separate window was introduced. The Auxiliary Panel is opened upon
user’s request by clicking right mouse button on the screen. Auxiliary panel includes:
« Enabling test data and setting the kind of test data,
« Displaying raw data,
» Scaling factor setting.

Auxilary Oscilloscope Device control Device current
controls screen buttons parameters

{ o= cmiboeshanmnmt e ey 0 0

:

I E | nntharon
-.-.-.'.-.-.i E Screen E E Control N
b onal i'—” _ Widget i E_ _-_!:f_nfl____ view settings

Hardware
parameters

Raw Data Display Spectrum Analyzer Spectrum Analyzer
Window screen (optional) view settings

Figure 67 Final GUI design

A detailed UML Class Diagram of View-related classes is presented in Figure 68.
All the View —related classes implement Observer interface. They register to observable
Model. View-relate classes hold no data. All the data retrieved from the user is stored
in the Model. All the data displayed by View-related classes is retrieved from the Model.
Therefore, the View is never out-of-date.

Maciej Lipinski 71

Universal Measurement System with Web Interface

auto
deviceState 5 DEBUG
Mindsl & buttonSotirce
S UTH] s chan1Source
a recordLenlabel :::;‘:me 28 Sl Ssciiee
& samplingLabel aton & delayCheckBox
Il e i] ControlButtons i) = delﬂnyﬂel
’ @ AcquiredParameters () dctionPerformed ©) o :i::sur:r:e'
== m initComponent L) disableAlButtons () “ failingEdge
AR 2 disableButtonsBut () i . "
" graphicScreentieight
£ acquiredDataParams == ,EITEMEMIBIMD"S o = ATARDICHEY eI
— initComponent 6] = tevelEnabled
- = WL & & model
2 a recordLenModel
a4 e a recordLenSpinner
B serialVersionuiD & recordingLabelName
o timeDiP R RNETlE a rfar_:orﬂinuPalamPanel
i AL 3 & enableChannelCheckBox “ i
4 s & horizontaiSlider N il
& ControlPaneiGui [& model & Shmtadcas)
— 0 a :_han e A samplingSpinner
o divName N showRawDataButton
a enableChannelCheckBox & EGEOmESE A spectrumPanel =
4 enableTickCheckBox 7 Romer o testDataEnable
& seriaMersionUiD :
a model R —— a triggerButton
A outcome 2. s s triggerDelayModel
A outcomeString = lhinkli - triggert evelslider
o~ &' spanner § TimeDivPanel] 5 triggerPanel
- A voitsDiv u. aHSideniplue o & Devicesettings o
offScreenimage = WNSUr-ms : i‘:&::::::; it E; -] actionPerformed ()
4 serialversionuiD & VoltsDivPanel o . o addLabeledSpinrer 6
- ® geti0roator () [salliitia P ssters &) » disableHardwareSettings 3
@ init &) m getlnitialParameters e L SEECuRG &) & enableHardwareSettings o
s getSlidervalue € LI € % initComponent t
a getvoltsDivalue 3 M eIl trel) 5 ftemStateChanged 3
i @ initComponent fb) ® setTriggerSiider o]
@ itemStateChanged & Iy stateChanged @
@ stateChanged 6] % s)
8 updute 0] P updateSetiings £
\ @ writeLabel (4] & chan
—_— a height
* o bortnas
& model
a modelHorizontal 1/
a modelVertical
a valueY
& verUnits & . chan
& verticalStider a dvName
a width a enableChanneiCheckBox
& VerticalPositionSiider (.} a enableDecibelChannelCheckBox
@ initComponent L) & freqDiv
4 o shtethangsd) a freqPosition
: my & B 0 & model
= QISLIEEnGianes ® updateSettings) AR aycame
o offScreenimage a
o rightMarginWidth & panelName
] screenHeight & voltsUnits
o screenWidth) & FFIPanel [
§F “serialVersionUID 4 fFrame @ disableSpectrumPanel [
o startx & fTextArea e enableSpectrumPanel £
o ‘tempOutputChan1 & model ® get10rootOf)
& tempOutputChan2 A& Teset m uetFreqDiWaiue)
.l tempSpectrumChant a scallingFactorJSpinner] getSliderValue (&)
tempSpectrumChan? & scallingFactorModel e inilComponent)
triggerLevellnPixelsPrint & scallingLabel @ itemStateChanged &)
- & separate @ stateChanged)
= ERCETNATANANIY — 4 showRawDataButton @ update L[]
& ScreenWidget &3 s m updateSettings 0
] o 1] & squareWaveform ® wiiteLabel 6!
= drawLineinScreen 3 o tesiDataEnable
] drawScreen £ a triangleWaveform
o getChanStarty : & AwdliaryPanel @
b LIS B L @ actionPerformed e
@ getStartX L) @ Component (i}
] getvectorsFromModel) s inftRawDataWindow)
o initAuxilianWindow &) @ itemStateChanged o
@ mouseClicked) 2 stateChanged Gy
o mouseDragged (6] @ update oy
° mouseEntered €3 @ updateRowDataWindow ()
@ ‘mouseExited {2
@ mouseMoved 5]
@ mousePressed)
° mouseReleased)
" paintBoarder 5]
@ paintComponent 5]
= paintGrid (6%
= paintSignature (6]
™ paintSpectrummajor Tick ()
] paintSpectrumMinorTick (3]
- paintSpectrumsScales ()
A paintTicking ()
a paintTitle 6%
™ paintTriggerLevel 3
| pointSpectrumVerticalTicksForChan (%)
® setChanStartY]
o setStartX £
update]
o updateComponent (]

Figure 68 UML Class Diagram of View-related classes

Maciej Lipinski

72

Universal Measurement System with Web Interface

Screen Widget (class ScreenWidget)

ScreenWidget is responsible for generation of the applet's screen image. It uses so-called
double-buffering. This means that drawing is done to an offscreen image in the first place.
When generation of the offscreen image is finished, it is drawn on the screen. Such solution
reduces screen flickering. The tasks of ScreenWidget includes:

» Drawing grid, title and all the other constant components of the screen,

e Drawing measurement data from channel 1 or/and 2 (if enabled) starting from
appropriate position (the screen view can be moved by dragging it with a mouse
or changing position on control panel),

e Drawing spectrum and its scales,

e Drawing “ticks” (similar to oscilloscope cursors),

e Showing Auxiliary Panel.

Auxiliary Panel (class AuxiliaryPanel)
Implements control of auxiliary functions:
e Hardware reset - triggers reset of FPGA logic,
e Scaling factor — data read from the device is multiplied by this value
* Show Raw Data — displays data read from the device (scaled by scaling factor)
e Test Data Enable — it is possible to force offline behaviour of the applet which results
in generation of waveforms

Control Panel GUI (class ControlPanelGUI)

This is nothing more than a container for widgets implementing control panels,
in particular: AcquisitionParameters, ControlButtons, DeviceSettings, FFTPanel
and TimeDivPanel. All the control widgets enable to set device parameters, display settings,
or change device state. None of the values are stored in the widgets, a value retrieved from
the user is instantly used to update the Model.

3.6.1.3 Controller

In Java, controllers are the listeners in Java event structure. Each component that
interacts with the user needs to implement some kind of event listener. Such method updates
appropriate value in the model. It is important that the neither View nor Controller stores any
data internally. This way the view is never “out of date”, since it displays data retrieved from
the model.

Figure 69 presents simplified UML diagram explaining how hardware parameters
are set in UMSWI.

Client’'s machine ARMputer

Class deviceSettings Class devModel Class fpgalltils HTTP Server Linux Driver

‘ JSlider ‘ setHardware

stateChanged H setTriggerLevel |

setTriggerLevel

| CGl H setlrig_leve.cgi ‘

/proc/setirigger_level

Trigger: 310.0{mV]

_ =
5 HTML GET
Ml =a
echo
Hardware Interface !,,

methods

| View I ‘Contmlierl | Model I

Model-View-Controller architecture

Figure 69 UML Diagram describing applets’ hardware interfacing [50]

Maciej Lipinski 73

Universal Measurement System with Web Interface

3.6.2 UMSWI management and configuration

The management and configuration interface of UMSW!I is implemented using HTTP
forms, Java Script and Common Gate Interface (CGI). HTTP forms provide buttons and input
fields. Java Script functions verify input data and call CGI scripts. CGI scripts perform system
calls to change system configuration or start/stop SCPI Server. The web page layout
is presented in Figure 70 .

Current system
configuration

Change of
system Ge defaul
configuration Got getao_ | 5
Set curent P & MASK
SCPI server
configuration Dicabled

(display & change)

Figure 70 UMSW!I configuration and management web page layout

The webpage is divided into three parts:

1. Current system configuration information — it reads current IP address and net Mask
when the webpage is loaded. Java Script function checklIP() calls getipaddress.cgi script
which make ifconfig system call. The output of the call is interpreted by checkIP() to get
IP address and net Mask. checklP() is presented in Figure 71.

377 J] femckion checkIP()

378 {

37 /#defing configuration parametars

aE var IPmumher;

381 var MiSFKnumber;

FEE /fereate httpRequest

383 var httpRequest = mewr XMLHttpRequest();

384 [457

385 var result = httpRequest.open{'GET'; '/ogi-bindsystenConfio/getip.ogl', trae):
386 Ycakch{error){

357 : document. getElenentById{ 'currentIP 'y .wvalue = "Can't read’;
3838 docunent. getElenentByld{ ' currentMiSE'). value = “Can't read"’;
388 . retmm;

380 il }

391 ##each time the HTTF ready state has changed, this function is called

382 httpRequest.onreadystatechange = fumctionr (evt)

a3 H {

gei=ts Hdrequast is complete

395 if (httpRequest.readyitate = 4)

396 = {

HET A#Response text of the request

S8 wvar message = httpRecquest. responseText;

209 Adaet TP out of the text

400 var index = message.index0f{"inet adde:") + 10;

401 ITPnumher = message.substring{index, index + 15):

402 var indexZ = IPnumber.index0£{" ");

403 IPnumber = IPruwmber.substring{0,indexZ});

404 Adaet Mask out of the text

405 index = message.index0E(Mazk:") + 5;

AfE MisEnumber = message.substring{index, index + 15);
407 docunent. getElenentByIdf ' currentIP ') walue = IPnumber;
408 docunent. getElenentByIdd{ ' currentMizE'y cvalue = MASEnunber;
404 = }

410 b ¥

411 ##send the request

417 httpRequest. send{null};

413 rebmrn IPnumber;

414 -l

Figure 71 Example Java Script script using CGI

Maciej Lipinski 74

Universal Measurement System with Web Interface

Change of system settings — enables to get default, set current and store in memory

as default IP and Mask.

Get default - reads IP/Mask value from default ip/default_mask file stored
in /usb/ARMscope/data folder. Default IP/Mask is set on the start-up of the device
by set_ip script.

Save as default - it gets the value of IP/Mask from the form input field, verifies
the input data correctness (IP/Mask has special format) and saves the IP/Mask
inputted in form field in default_ip/default_mask file. Default IP/Mask is set on
the start-up of the device by set_ip script.

Set current IP & Mask - it gets the value of IP and Mask from the form input fields,
verifies the input data correctness (IP and Mask have special format) and sets the IP
and Mask calling setnewip.cgi script. The script uses ifconfig system call to set
the new system configuration

SCPI server configuration — it enables to set the system to start SCPI automatically

on device start-up, it is also possible to start/stop the server, get default and store
in memory port number.

Vi.

Vil.

Enable/disable SCPI auto start — it modifies the default_scpi_autostart file stored
in /usb/ARMscope/data folder. If auto start is enabled, the file is written with
“Enable”, otherwise it holds “Disable”. start _scpi script, which is called during
system start-up, reads default_scpi_autostart file and starts SCPI server if “Enable”
is read, otherwise SCPI Server is not started,

Get default — calls the getdefaultport.cgi script which reads the default_port file from
/usr/ARMscope/data folder,

Save as default — it gets the value of Port from input field, verifies the input data
(Port has special format) and saves the Port number in default_port file. Default Port
number is used by the start_scpi script on system start-up to run SCPI Server,
proved the automatic SCPI server start is enabled,

START - it gets the value of Port from input field, verifies the input data (Port has
special format) and calls startscpiserver.cgi which starts the SCPI Server
on the provided port,

STOP — calls stopscpiserver.cgi which stops the server process,

TEST - calls testscpiserver.cgi which calls ps system command and looks for SCPI
Server process,

READ SCPI LOG FILE - calls getscpilogfile.cgi script which opens the log_file
located in /usr/ARMscope/data. SCPI Server writes to log_file detailed information
about its performance, especially errors.

3.7 Measurement Interface

Measurement Interface is implemented as a SCPI Socket Header Comma
Server with commands interpreter and hardware interface using ——
C language. An information about SCPI standard and its syntax can ~ SAVe:WAVEform CHT,REFA

be found in Appendix A: 3.4 . Figure 72 presents example SCPI \/ \/
message and its elements. Figure 73 presents design of SCPI Mnemoriics
Measurement Interface. It is a small application which takes as

Arguments
ace

an input argument the kind of user interface (server or local). Figure 72 SCPI

If the application is started as server, the second argument needs
to be provided, the argument is the number of port on which server

command
message elements

is listening. Details of program implementation of each of the
application’s components are described in the following subchapters.

Maciej Lipinski 75

Universal Measurement System with Web Interface

e Measurement Interface — SCPI
sliait TCP/IP scpi_main.c
et | ™ Interface y
Matiab sepl_serverc Commands| |Commands| p|Hardware X
Pre-parser Parser N 0 I .
| scpi_Eﬁrssr,c $ SCpi_parser.c —V deCOder $ icl;i:zgr?;ﬁ :D Interface DE_VICS
Local Local scpi_cmd_decoderc] | ... 1558 e e e Driver
client =i Interface
mainly scpi_loeal ¢
debugging
Yy ¥ v] v
Logfile interface | Storage
scpi_logfile.c file

Figure 73 SCPI Server design

3.7.1 User interface

The main user interface of the SCPI Measurement SCPI Server Client
(i.e. Matlab)

Interface application is a socket server. It implements
internet stream sockets which are characterized
by IP Address and port number. Stream sockets use TCP
to provide reliable two-way connected communication.
Alocal interface was needed during development.

It is a simple command line interface.

3.7.2 Pre-parser

¥

oo

Pre-parser is a single function (pre_parse_cmd()) (7

which receives data from the user as a single string send()

of characters. It extracts separate commands (command

messages) by looking for semicolons. The outcome of this cloget
function is a dynamically allocated linked list of separated

commands.

Figure 74 Communication layers
3.7.3 Parser

For each element of the linked list returned by pre-parser, parser function
(parse_cmd()) is run. It extracts and recognizes elements (mnemonics, argument) which
compose the command. Mnemonics are checked against a list of known mnemonics.
If the extracted mnemonic is not found on the list, an error is returned.

As SCPI syntax allows full names and abbreviation of the mnemonics and determines
that the parser is not case sensitive, the following approach was taken. For each mnemonic,
an abbreviation and full name needs to be placed in the list of available shortcuts.
The names are divided into several lists according to the abbreviation length. The extracted
mnemonic is converted into uppercases and checked against the lists (starting with the list
with the longest shortcuts). If the mnemonic is found, it is added to the head of a linked list
associated with the command which is being parsed. If it is not found on the list, an error
is returned.

Consecutive commands do not have to start each time from the root (*:"). It means that,
if a command is executed (i.e. :SENS:SWE:TIME 1) and the consecutive command has
the same path (i.e. :SENS:SWE:POIN 100), SCPI standard sais that it is enough to input
the last mnemonic (i.e. POINT 100) instead of the full path. This is why the parser, before

starting to extract mnemonics, checks whether the full path is provided (starting with “").

Maciej Lipinski 76

Universal Measurement System with Web Interface

If colon is not detected at the beginning of the command, linked list from the previously
performed parsing is taken deleting only the last element (head) of the list. The outcome
of the parser function is a linked list of consecutive mnemonics which compose the header

and command’s argument.

3.7.4 Commands decoder

A dictionary of available commands was
translated into a data tree (Figure 76). Each node
of the tree is associated with a mnemonic and is
represented by a structure that holds (Figure 75):
mnemonic’s name,
list of pointers to child-nodes,
pointer to a function associated with the node.

[l

137 gtruct cnd structf

138 char *riame !

139 struct cmd struct *cmds[50];
140 int {*func) {chark);

141 ¥

Figure 75 Command structure

[sense |

*IDN? “ *CLS ” *RST " TRIGgerI

RUN " STOP " ABOR ||WAVEf0rm

| MODE ” EDGE || STATusl

| DATa

I POINts |

TIME ”TINTervaI

SOURce Il LEVel

SWEep I

SLOPe I

DELay |

*IDN?

*CLS

*RST

:RUN

:STOP

:AUTO

:ABOR

:TRIGger?
:TRIGger:MODE
:TRIGger:STATus
:TRIGger:EDGE?
:TRIGger:EDGE:SOURce {AUTO|CH1|CHZ|EXT}
:TRIGger:EDGE:LEVel {number}
:TRIGger:EDGE:SWEep {AURO|NORMAL|SINGLE}

:TRIGger:EDGE:SLOPe {NEGative|POSitive}
:TRIGger:EDGE:DELay {number}

:SENSe?

:SENSe:SWEep?

:SENSe:SWEep:POINts {number}
:SENSe:SWEep:TIME {number}
:SENSe:SWEep:TINTerval {number}
:CHANNal1:SCALe {number}
:CHANnNal2:DISPlay {ON|OFF}
:CHANNAL2:0FFSet {number}
:CHANNai2:SCALe {number}
:TIMebase:OFFSet {number}
:TIMebase:SCALe {number}
:TIMebase:FORMat {XY|YT}
:WAVeform:DATa? {CHANnal1|CHANnal2}

scpi_ROOT.c
scpi_SENS.c
scpi_SENS_SWE.c
scpi_TRIG.c
scpi_TRIG_EDGE.c
scpi_TRIG.c
scpi_WAV.c

Figure 76 C implementation of SCPI dictionary

Based on the data tree, a set of C-files defining nodes’ relations and command functions
were created. A C-file representing the parent node (i.e. TRIGger) defines its connections

with children nodes (i.e. MODE, SENSe, STATuSs)
nodes (Figure 77).

Maciej Lipinski

and functions associated with children

77

Universal Measurement System with Web Interface

(=] ##1 Afile scpi_TRIG.c

(N

: “orief TRIG implementation.
31 Ly
i #include "acpl main.h"
5
i int init TRIG cmds(})
e 4
5|
S| AR TRIG MM
T TRIG.cuds[(] = &TRIG MODE:
¥ | TRIG.cmds[1] = &TRIG STAT:
|
T3 | TRIG.cmds[2] = &TRIG SLOPE:
14 | TRIG.cmds[3] = &TRIG EDGE;
15 |
e | TRIG. name="TRIG";
79 | TRIG. func=&fun TRIG;
ig |
Fal | TRIG_MODE.name="H0IUE":
g | TRIG_MODE. func=¢fun TRIG MODE:
2L |
22 i TRIG STAT.name="3TLT";
23 i TRIG_STAT. func=&¢fun TRIG STAT;
ga. L3

Figure 77 Defining nodes relations and function associations

To make development and further extensions easier, the following file naming convention
has been established:
scpi_NODE1_NODE2_.... NODEx.c
scpi_NODE1_NODE2_.... NODEx.h

3.7.5 Command logic

Command logic is implemented for each node in the function associated with the node.
A pointer to this function is held in the data tree. SCPI Standard requires all the commands
(except: :*CLS, :*RST, :RUN, :STOP, :AUTO) to answer a query. Query is defined
as a header with question mark “?" at the end (argument). For the end nodes (nodes without
children), a query returns value of the setting associated with the node. For the middle nodes
(nodes with children), a query returns settings associated with all the children nodes.
To make the implementation of command logic easier and faster, a special function has been
defined which takes as an input a list of possible arguments (i.e. ?, AUTO,CH1,CH2,EXT).
It recognizes the argument and returns its index in the list. In principle, a function which
implements a command logic has structure presented in Figure 78 .

Maciej Lipinski 78

Universal Measurement System with Web Interface

4 int fun NODE1 MAME {char *input wralue)
5 B
& if{ iz not empty{input walue) } Adcheck if input value was provided
| =] {
i int option numher;
9
I ##defing possible input_valug options
11 ,r—] char posszible options[][Z][10] = {
12 DO e end Y,
13 UV, VY end™ Y,
1 i BRI § ¥
15
16 ##check which options has been provided
17 option muwmber = get option{input wvalue,possible options, 2):
1
19 if{option nmumber = 0}
2 H {
21 Hewecute aption 0 logic
22 . }
S else if{option number = L}
] {
0 #dexecute option O logic
25 ¥ }
2 else if{option number = I} #fquerry
28 H {
249 femecute query
30 . }
a1 else
32 o {
i £derear, weong input_value
G ¥ }
a5 - }
36 else
R] {
bt E] Hderrar, input value is empty
FE r }
40 o If!

Figure 78 Template of function implementing command’s logic

3.7.6 Hardware interface

Hardware interface uses Linux Device Driver to control FPGA. The driver is interfaced
by reading and writing appropriate files in /proc/driver/fpga directory.

3.7.7 Lodfile interface

Each time SCPI Interface application is opened, a new logfile is created. All
the messages concerning application performance are written to the logfile. A special
function (print_to_logfile) is defined to make the process simple and efficient. Studying
a logfile, the entire process of command parsing, decoding and execution can be followed
step-by-step. It makes much easier finding errors SCPI commands send by the user (Figure
79).

Maciej Lipinski 79

[TR [oy Y T Y o T R 5 e

Ll

1.

3.

4,

Universal Measurement System with Web Interface

SCPT PARSER & INTERPRETER LOG FILE

pre_parsing result:
igensiswe: tint 100
iZens:sweipol L

parzing result:
SENS

STE

TINT

arqument walue:

S S 0 0, S,

Executing :3EN3:3WE:TINT

FTNTAX ERROR({10Z): Failed to parse the input data, probably incorrect command

Error in: -=P0OI<-

Figure 79 Example SCPI log file

3.7.8 Extendibility

New commands (nodes) can be added to the SCPI Measurement Interface. In order
to do that, the following actions needs to be taken:
PARSER - entry needs to be added to the list of recognized mnemonics and its
abbreviations in the scpi_parser_data.h

COMMAND DECODER —a node in the data tree needs to be added by:
a.

b.

Declaring new node (appropriate header, depending on the node’s location in data

tree),

Creating a pointer in the parent node (appropriate C-file, depending on the node’s

location in data tree)

Creating a pointer to the function implementing command'’s logic (appropriate

C-file, depending on the node’s location in data tree),

COMMAND LOGIC — an appropriate action associated with the new command needs

to be implemented (appropriate C-file, depending on the node’s location in data tree)

recompilation.
A detailed instruction describing how to extend SCPI Measurement Interface with is included
in SPCI Manual available on the UMSW!I website
Figure 80 summarizes parsing and decoding process for “:sens:swe:poin 10 ;
‘trig:edge:sour auto ; :run ” input string.

Maciej Lipinski

80

Maciej Lipinski

Universal Measurement System with Web Interface

|_ TELNET TERMINAL |

maciex@maciex: ~

Fle Edit View Terminal Tabs Help
| Escape character is '°]'

scpi > :sensiswe:poin 10 ; :trigredge:sour auto ; :run

I |
| You have connected to SCPI server on ARMputer | H |
I |

=

IN3ITO

<

]

PRE-PARSER
|:sens:swe:poin 10] 0-|->| :trig:edge;sour auto |.-|->[run IZI |

- ngk

PARSER L

BIC S EEC e C SR

S~

COMMAND DECODER

IdOS

TRIGger

Y

| MODE |I EDGE " STATus

ISOURce || LEVel || SWEep " SLOPe || DELay |

d3JAddS

& -
COMMAND LOGIC |
int fun_TRIG_EDGE(char *input_value)
HARDWARE INTERFACE
set_triggerSource(0); _

Figure 80 Explanation of parsing and decoding process

81

Universal Measurement System with Web Interface

4. Testing

4.1 Development test

Testing was performed for each of the system’s components separately. Once a part
of the system was proven to work correctly, it was added to another correctly working
component, to eventually, create a working system. Such management made
the development easier and more efficient. The order of development and tests was
following:

Development and tests of Embedded Linux,

Development and simulation of FPGA logic,

Development and tests of Linux Device Driver without interfacing hardware,
Development and tests of Java Applet without interfacing Linux Device Driver,

Tests of Java Applet which interfaces Linux Device Driver without interfacing hardware
(FPGA logic),

Development and tests of SCPI Server without interfacing Linux Device Driver,

7. Tests of SCPI Server and Linux Device Driver without interfacing hardware

(FPGA logic),

8. Tests of FPGA logic and Linux Device Driver (interfacing hardware),
9. Tests of Java Applet interfacing Linux Device Drvier interfacing hardware (FPGA
logic),
10. Tests of SCPI Server interfacing Linux Device Driver interfacing hardware (FPGA
logic),
11. Development and tests of UMSWI management and configuration interface.
During the development, when a test analogue input signal was required, two sources
of signal were used:
e Stabilized power supply for constant input,
e Music card output, waveforms generated with Cool Edit 2000, waveform generator.

SANE T A

o

4.1.1 Embedded Linux Operating System
Tests of Embedded Linux were conducted by checking whether the required by project
utilities and peripherals work correctly:
* Ethernet,
* MMC/SD card ,
« USB (optional),
e httpd (web server).

4.1.2 Linux Device Driver

The driver was initially tested without interfacing hardware. The driver’s architecture
separates hardware interface from the driver’s logic and the actual communication between
the driver and hardware is limited to reading and writing registers at appropriate address.
Therefore, it was possible to test thoroughly driver's logic by substituting the operation
of reading/writing hardware by reading/writing variables and outputting information about the
operation to the terminal/log file. Once logic was proven to work correctly, the hardware
interface was tested by examining Static Memory Controller (SMC) control signals
on the microprocessor’s pins. Further testes of the driver were done along with Java Applet,
SCPI Server and FPGA tests.

Maciej Lipinski 82

Universal Measurement System with Web Interface

4.1.3 FPGA debugging

FPGA logic was firstly tested using Quartus Il Simulator tool which enables functional
and timing simulation. Only simulation was done at the beginning, since the author was not
provided with recorder module.

When the hardware was available, the logic was tested during its operation (in real
time) using Signal Tap Il tool provided by Quartus Il. The SignalTap Il Embedded Logic
Analyzer [51] enables to debug an FPGA design. It does not require changes to the design
or external probes in order to capture the internal nodes’ or 1/0O pins. The device memory
is used to store the captured data.

FPGA testing was started with FPGA-ARM Communication Logic. It was needed
to work correctly before starting tests of Acquisition Management Logic which is controlled
from ARM. SignalTap Il enabled to see the signals coming from ARM microprocessor,
therefore it was possible to determine whether the hardware part of the driver was working
correctly. Thanks to the Signal Tap, it was also possible to establish the right SMC
parameters used in FPGA-ARM communication and described in 3.3.1 Communication
logic . During the tests of FPGA-ARM communication, a multitester turned out to be useful
as well. Some of the problems encountered during attempts of communication were caused
by minor faults in the hardware of UMSWI. In particular, unconnected pins of address
and data bus. After this experience, to avoid tedious debugging of the FGPA logic done
in vain, the hardware was always tested first. Therefore the control logic of acquisition
process was extended to allow tests of SSRAM and the address (data)bases. The following
tests were performed to proof SSRAM reliability:

* Instead of storing in SSRAM data read from ADC, data was generated FGPA
was written to SSRAM and than read, two kinds of data were generated:
o Data equal to the address of writing,
0 OxAAAA and 0x5555 in subsequent addresses,
« Electrical values of the pins were measured - two missing connections were detected.
SignalTap was also used to debug and improve the acquisition control logic, mainly
the trigger and delay timing to make sure it is correct.

g T 0
Type |Alias Name 1 12 13 13 18 18 17 18 19 20 2 2 z 2 2 = 27
@ | o | 1 = " — — 1

o ADC_SEL

= _}-\SDO ﬁ o= tl. 6 _7%

%— [ADC1_D 0221h 0200 021Fh)é‘qa 0220k ‘L,_ ¥l oaren ¥ oomel H ozifn [#S.02%0n ﬂ 021Fh_% 0220h

a5 - ADCZ D 0248h 0247h T A L‘,()r‘wm_x e T 024Eh 0247k 0248R

= 3 SSRAM_& TFarn Y _AFTAAn || (F7Aeh N AFiAm |} TF7Amh ¥ _1FrARn ¥ 1FIATh) iFTASh ¥ iFTABn Y _iFTADh AFTAZH

3 SSRAM_8DSC :

) | SSRAM_BW! ! Y

= SSRAM_EW2 M = J

) SERAM_BWE e | I

o SSRAM_CE ; 0 e

= SSRAM_CLK |] [Fr— o

= SSRAM_OE

| & | _'TR\GJN

= & ..isition_controller:inst3timer 000000k

Py 1 st3{state capture 1

= Sfstate. completed T

Y isfion_controllerirst3|state idls »
< bl

Figure 81 Debugging FPGA
Final tests of FPGA logic and Linux Device Driver where done applying a signal

(from known source) and performing entire measurement using /proc file system interface
of fpga driver. The acquired data begin compared with the source (reference).

Maciej Lipinski 83

Universal Measurement System with Web Interface

4.1.4 Applet tests

The applet was developed and tested along with | Hinn
CGI scripts. In the first place, they were tested without —* X \ il ‘ T ‘
interfacing Linux Device Driver. The scripts were e ‘
configured to read and write ordinary files (including the | \/ W | \ |
readout data). Once the applet’'s CGl interface and CGl B
scripts were proved to work correctly, an OFFLINE mode
was introduced in the applet. In OFFLINE mode the data
is prevented from being sent with CGI scripts to server | \
(on the lowest possible level of applets’ architecture). T
The parameters are written to variables and read from SANE SRR 2
variables, the measurement data is generated. = [[
This enabled easy development of the applet in Eclipse
Development Environment. Before being tested as a part
of entire system, the applet was run with the driver which
does not interface hardware. Once interfacing hardware, the applet with all its functionalities
could be tested. It also allowed further tests of other system components, .i.e FPGA logic
(Figure 82 presents trigger tests).

Figure 82 Trigger tests

4.1.5 SCPI server tests

Tests of SCPI server were done in the similar way as the tests of applet. In the first
place, information about the hardware operations to-be-made was printed, secondly, a “fake
driver” (which does not interface hardware) was used, lastly SCPI server was connected
to the hardware. For the testing purpose a local interface for SCPI Server was developed.
Itwas done to be able to exclude the possibility that error is caused due to wrong
implementation of socket protocol. Finally, tests of socket server and all other components,
using telnet application as client, were conducted.

SCPI Server was tested with Matlab application[52]. Matlab uses TCPIP object
to connect with remote instruments via TCPIP protocol. “fwrite()” function is used to send
messages and “fread()” function is used to receive responses. Special m-files were created
to simplify communication between Matlab and UMSWI.

SCPlopen() — opens connection with UMSWI,
SCPlidentify(t) — identifies device,
SCPImeasureTest(t) — performs example measurement
SCPImeasureAUTO(t, sample_number, chan) — performs measurement allowing

to choose sample time and channe,
SCPIclose(t) — closes connection.

Figure 83 presents measurement of the same waveform using Java Applet and Matlab.
B C el
o ha Er——

Universal Measurement System with Web Tnterface
ana's)

A\

Ay
VARVARE—= |

Figure 83 Matlab test oi‘%CPI Server

T B S T S

Maciej Lipinski 84

Universal Measurement System with Web Interface

4.2 Final tests

Tests were conducted in ELPHA/PERG laboratory. The aims of final tests included:
» verification of measurement accuracy,
» specification of UMSWI's parameters and features,
» observation of system’s behavior in boundary and beyond-boundary conditions.

4.2.1 Test set-up

The parameters of devices needed to conduct tests were determined by UMSWI's
theoretical parameters and practical methods of its verification.

Frequency

Since the sampling rate of UMSWI's Analogue-to-Digital Converters is 100MHz, the highest
frequency of an analogue signal which, theoretically, can be reconstructed from samples
(according to Nyquist-Shannon sampling theorem) is 50MHz. Therefore, theoretically,
the range of digital oscilloscope used for reference measurement should be at least 50Mhz
and the generator should produce signals in the rage 50MHz-OHz. However, in practice,
the frequency value for which an oscilloscope is considered accurate is significantly smaller
than theoretical value and is called “frequency range” (Appendix: 4). It is indicated by
the frequency at which measured signal is attenuated by 3dB. Since preliminary tests
showed that frequency range falls between 15-20MHz, 20MHz functional generation was
considered sufficient. On the other hand, to receive quality reference measurement, it is
recommended that the reference measurement device is significantly more precise than
the device under test (DUT). Therefore the reference oscilloscope frequency range should be
100MHz or more.

Voltage

The resolution of UMSWI's ADCs is 1V/1024bits ~= 1mV, therefore the vertical sensitivity
of ImV/div should be sufficient to verified the amplitude of the smallest signal that could be
detected by UMSWI. Devices which were used to conduct test measurements are listed
in Table 12. The test setup-up is presented in Figure 84 .

Name Model Parameters Function
Digital Phosphor Tektronix Rangg: 5_OOMHZ Provided reference
Oscilloscope TDS 3054B Sampling: 5GS/s measurement
P Vertical sensitivity: 1mV/div
Function generator 1 | TG120 20MHz Max freq: 20MHz Input signal
Function generator 2 | MXG-9810A Max freq: 7TMHz Input signal

Table 12 Devices used during tests

Maciej Lipinski 85

Universal Measurement System with Web Interface

Figure 84 Test set-up

The measurements were taken on the reference oscilloscope using “measure” function.
On ARMsocpe, measuring was performed using “ticks” to receive time of one period
and signal's amplitude. It can be assumed that readout error of a period (or voltage)
on AMRscope is approximately one pixel. The screen is 500-pixel wide (and high),
and was always fitted to show less then 2 periods(or less then 2 amplitudes).
Therefore, the readout error can be estimated as:

error,, < error < error,, (Eq. 1)
where
1px* 0.1* Xw 1
error, = timedl\(gr = = 0.2% (Eq. 2)
500px* 0.1% X o= =T 500
iv

is the error when period (or amplitude) is equal to screen width (height), and

time_or _mv

1px*0.1* x . 1
errorzx = Hi medl\(/)r =y = =0.4% (Eq- 3)
250 px* 0.1* XT 20
Iv

is an error when two periods (or amplitudes) are equal to screen width (or height). Therefore:

0.2<eror<04

All the Matlab scripts used to present measurement results are included in the attached CD.

4.2.2 Vertical axis measurements

Initial measurements of amplitude accuracy were taken within moderate frequency
and voltage range to avoid errors of low- and high-frequencies. Two measurement series
were taken. First measurement included constant frequency and various amplitude values
(from 100mV to 1V with 100mV intervals). Second measurement included constant
amplitude value and various frequencies (from 1Hz to 1MHz with logarithmic increment).
Results of the initial measurements of amplitude accuracy are presented in Figure 85
incharts 1&2. Charts 5 & 6 present the measurement error. It is quite apparent that
the error is constant. Therefore, it was decided to introduce scaling factor. A simulated effect
of scaling factor on the amplitude accuracy is presented in charts 3 & 4, and the decreased
accuracy error can be seen on charts 5 & 6. The scaling factor was calculated as an average

Maciej Lipinski 86

Universal Measurement System with Web Interface

of ratios between reference amplitudes and measured amplitudes (scaling_factor = 1.0946).
Green lines in charts 3, 4,5 & 6 show results of the amplitude accuracy measurements
conducted with scaling factor applied. The results prove that introducing scaling factor was
a good decision, the relative error (in per cent) dropped from 8.62% to 0.69% which is close
to measurement readout error. The standard deviation of the amplitude is small and equals
0.44 .

1. Constant amplitude for different frequencies

2. Amplitude measurement

1500

520 T T T
reference

reference
— ARMscope

=
Z 180f

480

500 —— ARMscope B 000

[mV]

440
10

0 &

10’ 0 o n* 1’ 10
[Hz]

3. Constant amplitude for different frequencies

520

refarence
— ARMscope(simulated scaling)

ey /\ ARMscope(applied scaling) 1000 % ARMscope(applied scaling) P
Z am} / \ 1% /-/
= \ £ e
sonf] L e 5 s00 P -
280 L I L . .
0 I . I . L 1 L .
10° 10’ 10° 10° 10* 10° 10° 1 2 3 4 5 B 7 B 8 10

[Hz]
8. Amplitude measurement errar for various frequencies [%]

Initial
Simulated scaling
Applied scaling

S00F

1 2) 4 5 g 7 g g 10
[Test number]

4. Amplitude measurement

1500

reference
— -~ ARMscope(simulated scaling)

[Test number]
B. Amplitude measurement errar|%]

T R =R

Initial

Simulated scaling
— Applied scaling

[%]

ak il —— +
1’ 10! 10 1’ 1t 10 10 1 2 3 4 5 B 7 B 3 Il
[Hz] [Test number]

Figure 85 First amplitude accuracy test (final_test_1.m)

Once it was proven that amplitude accuracy is stable for reasonable frequencies,
a measurement was conducted to verify the range of amplitude accuracy. The measurement
focused on high frequencies. The results are presented in Figure 86. As described
in Appendix A: 4 , -3dB attenuation determines the frequency range of a device. The results
show that the actual frequency range is approximately 12MHz. The attenuation is flat until
1MHz and almost drops below -3dB for 10MHz. Therefore, it seemed reasonable to state
that the frequency range of ARMscope is 10MHz, while the actual frequency range is slightly
higher and reaches 12MHz. The results clearly show that there is no point in conducting

measurements for frequencies higher than 20Mhz.
Attenuation of amplitucle [dB]

T i
’ a g \‘*\L‘i |
A ;
—3dB
] f— Attenuation for square wavefarm
—+— Attenuation for sine waveform) |

& (]
10 [Hz] 10

: Attenuation of amplitude [dB]
ol T T T

——3dB
Attenuation for square waveform
—— Aftenuation for sine waveform

[48]

12 14 6 18 2
igea) o’

Figure 86 Amplitude attenuation for high frequencies (final_test_2.m)

Maciej Lipinski 87

Universal Measurement System with Web Interface

Figure 87 presents attenuation of various amplitude values for frequency 10MHz
and the relative error (in per cent) of amplitude accuracy at such frequency. The attenuation
does not go beyond -3 dB which means that the proposed frequency range of 10MHz seems
to be the good choice.

Attenuation of amplitucle [cB]
T T

e !

.2 4| — Attenuation for square waveform =
2B -
28 -

| | | | | | | | |

[dB]

2
100 200 300 400 500 B00 700 800 500 1000
[rri]

Amplitucle accuracy error [dB]
30 T T T T T

7]
100 200 300 400 500 B00 700 800 500 1000
[rri]

Figure 87 Amplitude attenuation at 10Mhz for various amplitude values (final_test 3.m)
Figure 88 presents offset error for 10KHz square signal. Offset accuracy indicates how

well the device handles low-frequency issues. The average error of 2.62% shows that
this device is not perfect for low frequencies.

Offset error
5 U T T T T T
Offset error
15 —— Average offset error: 2.62%
4k -
” _\/ |
3 - -
2.62%
® 250
2 =
151
1 -
05k B
gl 1 1 1 I 1 L 1 |
-300 -200 -100 o 100 200 300 400 200

[rm]

Figure 88 Offset error
Although the resolution of ADCs is ~1mV (1V/1025 bits), due to the noise, the minimal

amplitude which can be detected and measured by ARMscope was observed to be 5mV.
Figure 89 and Figure 90 present example test screen shots.

Maciej Lipinski 88

Universal Measurement System with Web Interface

2.5 mvV 5mV_ 10 mV_ 5mV. 10mV
10Hz —\——— 1 10kHz

Figure 89 Minimal input voltage test at 10 Hz Figure 90 Minimal input voitage'
test at 10 kHz

4.2.3 Horizontal axis measurements

Relative error of signal frequency and period are presented in Figure 91.
The measurements show that frequency error stable in the frequency range:100Hz-10MHz.
The error is on the level of measurement error: 0.2% - 0.4%. This is a big error if compared
with data sheets of commercial digital oscilloscopes. However the error is determined by
the readout error and the error of reference measurement. It is very probable that the actual
frequency error is much lower.

Frequency relative error [%]

3 e Ty

: Sine waveform 4
251 —% Square waveform —
2= : ,
_1ER ; : i

& i :
1 s /\ i

4
[1 1l 1l 1 i
10’ 10t ot 1 1o 1ot 10’

[Hz]

Signal period relative error [%]
A""‘J ! L I SR A) X T T L R L X | g a)

Sine waveform

~t—— Sguare waveform

,,

el it R | L GG RREE 4 N W OEL P F R

ls]
Figure 91 Signal frequency and period relative error(final_test_4.m)

The results prove the upper limit of UMSWI's accurate measurement (established in 4.2.2)
and sets limit for low frequency measurement to 100Hz. However, the low frequency

Maciej Lipinski 89

Universal Measurement System with Web Interface

limitation can be questionable, since the instability of reference oscilloscope for 10Hz
measurement is approximately 1-2%.

Figure 92 presents measurement of rising time. Rising

Appendix A: 4.

40

Rising time

time is described in

B e o e e S

30

Pich o

Figure 92 Rising time measurement (final_test_5.m)

4.2.4 Frequency domain

Performance of UMSWI spectrum analyzer in terms of frequency measurement was
tested by reading frequency of the main harmonic displayed by the UMSWI's spectrum
analyzer and frequency measurement form reference oscilloscope. Since the UMSWI
spectrum analyzer is not suitable for accurate reading of frequency, this test was only
to prove rough accuracy of the FFT algorithm and scale display. Table 13 and Figure 93
present measurement results. It is clear that FFT algorithm works correctly in terms

of frequency.

Sine waveform

Square waveform

Reference Spectrum analyzer
frequency [Hz] reading [Hz]

10100 10000

109000 110000
1055000 1050000
5200000 5200000
7450000 7500000
11300000 10125000
12500000 12500000
15000000 15000000
17500000 17500000
20000000 20500000
21200000 21000000

Maciej Lipinski

Table 13 Test of Spectrum analyzer

Reference Spectrum analyzer
frequency [Hz] reading [Hz]
10020 10000
107000 107000
1040000 1040000
2500000 2500000
5060000 5100000
7500000 75000000
10900000 11000000
12500000 12500000
15000000 15000000
17500000 17500000
20000000 20000000
90

Universal Measurement System with Web Interface

Spectrum Analyzer frequency error

sine waveform
= sqjuare waveform
8 k.

[%]

1 1 1 rope e ey | 1 1 by oy] 1
10 10’
[Hz]

Figure 93 Spectrum analyzer test (final_test_6.m)

The performance of UMSWI’s spectrum analyzer in terms spectrum’s amplitude value
(in mV and dB) was tested with the help of Matlab and using ability to perform measurement
with UMSWI from Matlab. To connect from Matlab to UMSWI SCPI Server and perform
measurements, scripts provided on UMSWI website were used. The measurement
connection with UMSWI was starte with SCPlopen.m. Another script (SCPImeasure.m) was
used to retrieve data with appropriate parameters. Matlab connection with SCPI Server
is closed using another script: SCPIclose.m.
Spectrum analysis of the same signal were done using UMSWI Java Applet (Figure 95)
and Matlab scripts (Figure 94), the results compared. This analysis proved that SCPI Server

works correctly.

Measured signal

400 T T T

- i i i i i
a 01 oz 03 0.4 05 0.6 o7 0.s 09 1
[s] w10
Signal Spectrum [mY]
T

s
=
4 5 B 7 B 5 10
[Hz] w10’

heasured signal [dE]
u : : : : : : : : :

[dE]

-150 | | | | |
[Hz) w10t
Measured signal [dB]
D T T T T T

[dB]

[Hz] w10t

Figure 94 Frequency analysis done with Matlab script (myFFTplot_1.m)

Maciej Lipinski 91

Universal Measurement System with Web Interface

Universal Measurement System with Web Interface

Device ONLINE

AUTO H

STOP ‘

Acqured Data Parameters

- New data (disarmed)
‘05011?“01'?‘““'1 S""-“““'{“ Anal, (Y4) Samplingtime: 10[ns]
i 1]] SINGLE J NORMAL J Trigger Delay: 0insl

Record Lenght: 1310720[ns]

BOTH CHANNELS

TIMEDIV: 50 us

Horizontal OFFSET

20ns 1us 50us 2ms .1s

CHANNEL 1 CHANNEL 2
[v] Enable Chan || Chan Tick [_] Enable Chan || Chan Tick
VOLTS/DIV: 200 my VOLTS/DIV: 500 my
10mv 500my 200 1omv 500mV 20v
Vertical OFFSET Vertical OFFSET
Recording Parameters: Trigger Delay
Sl i L #
i [Enable delay
Record Lenght (MAX) _ Stope

1210 T20Fhs

7 Falling edge 8 Rising edge

Spectrum Analyzer Trigger Source
= ®
| Enable fnabyzer [| Degibel * PO" et
FREQDIV: 10 kHz O chant 2 ehan2
— pETR
| et
1kHz 50kHz 20kHz Trigger: 0[mv]
2
———
i
T T
i i
i
i
i
) I
i 0 1
b I I
i
! | |
L I 1
---------- PESr et el et
i I 1
i i
} |) :

i] [
i i
i ! !
200 . i 3 _a00 E |
0 800 1000 1500 2000 3500 3000 3500 4000 4500 S [EE«z} 10 20 a0 40 5 B0 70 80 a0

Figure 95 Frequency analysis conducted with UMSWI Spectrum Analyzer

4.2.5 Boundary conditions tests

4.25.1

Waveforms captured at bandwidth frequency and beyond bandwidth frequency
are presented in Figure 96. The sine wave is of reasonable quality at 10MHz. Since,
there are only 5 samples per division at 20MHz, the sine signal is more similar to triangle.

Hardware-wise

Sine waveform,
F = 20MHz

Square waveform, A = 300mV,' F % 20MHz

Perlod
49.83ns

A =300mV,

3&:’"5;::%“:
Sine waveform,
'A =300mV, F = 20MHz

000 10000 15000 20000

Square waveform, A = 300mV, 'F =

Chi period |
94.49ns 1

oo 16000 15000 20000 23008 3UDDD

10MHz

' mM20.0ns'A Ch1 J 30.0m!

Sl s s e e b S it TR S S

Figure 96 Sine and square signal measurement at 10 MHz and 20 MHz

Maciej Lipinski 92

Universal Measurement System with Web Interface

Because of a hardware filter at 30MHz, the square wave
measured at 10MHz does not have square shape. It can be
clearly seen form the spectrum that the second, third and other
harmonics were cut off by the hardware filter causing signal

deformation.

When the input signal amplitude exceeds 1V, or the
offset causes the signal to go beyond +500mV or — 500mV
(if scaling factor applied, the values may be different), the
measured signal is cut off. Exceeding the input voltage range is

not recommended due to possible hardware damage. Figure
97 presents measurement of input signal with 1.2V amplitude. Figure 97 Input signal

The signal is obviously cut off.

425.2 Software-wise

exceeding voltage

During tests in the ELPHA/PERG laboratory the UMSWI was used continuously for
6 hours without necessity of hardware reboot or software reset. The time of measurement
taken using Applet application depends on the number of samples. In case of maximum
memory usage (128 K words), it reaches average of 5 seconds. When the number
of samples equals screen resolution (500px), the measurement time drops to less than 1s,

the refresh rate in auto mode equals 0.85 times / s.

4.2.6 UMSWI parameters

Parameter name Value
Bandwidth 10 MHz
Memory Depth 128K points (Single and Dual Channel)
Channels Dual Channels + External Trigger
Sample Rate 100MS/s
Rising Time 25ns

Time Base Range

20ns/div to 200ms/div

Trigger models

Edge, Auto, Manual

Trigger source

CH1, CH2, Ext, Manual

Vertical Sensitivity 10mVto 1V
Vertical Resolution 10 bits
Dynamic Range 46 dB
Input Voltage v
Input coupling DC
Measurement time of 128K samples 5s
Auto mode screen refresh when sample number :

: 0.85 times/s
equals screen resolution
Time base accuracy 4000 ppm
DC Vertical Accuracy +2.6%

Maciej Lipinski

Table 14 UMSWI parameters

93

Universal Measurement System with Web Interface

5. System Applications

5.1 European Organization for Nuclear Research (CER N)

Universal Measurement System with Web Interface is currently used at European
Organization for Nuclear Research (CERN)[53].

UMSWI was used at Proton Synchrotron (PS) to observe proton bunches. PS is
a 28 GeV accelerator used as an injector for other CERN'’s facilities: the Super Proton
Synchrotorn (SPS) and the Large Hadron Collider (LHC). One of the PS accelerator
parameters is harmonic number (h) — the number of proton packages being accelerated.
Bunches (groups) of protons are transported in buckets. The idea is explained in Figure 98.
The harmonic number of CERN’s Proton Synchrotron ranges from 1 to 23. The frequency at
which protons circulate in PS (frequency of turn) varies from 430kHz to 470kHz. The change
of frequency from 430kHz to 470kHz increases protons’ energy from 800MeV to 26GeV.

T,..: Peried of 1 turn

—

\/\/\
I RAVARVARY
\ﬂﬂﬂﬁ
AYAYA

Tqr: Period of RF oscillation

| Multiple bunches ‘

AAAAN AAAAAS
AVAYAYAVAVAVAVAVAVATAY

.

V(o

0ﬂ¥

. T, Period of 1 turn
TRF. Period of RF oscillation

Figure 98 Acceleration of particles with AC voltage radio frequency RF [54].
Figure 99 presents measurement of a beam of protons filing 4 out of 7 buckets (h=7).

In all the measurements, channel 1 is connected to measurement transformer, channel 2
is connected to Wall Current Monitor.

Maciej Lipinski 94

Universal Measurement System with Web Interface

- . = Acqured Data Parameters
Universal Measurement System with Web Interface e
= NORMAL (New data)
IOscl]l?scopeIamd S 3ectm'rln Anallyzer (‘IFS) - Sampling time: 10[ns
i | | | | | | i | SINGLE || NORMAL | Trigger Delay: 0[ns
: i i | 1 r— Record Lenght: 1000000[ns
| i | i | stop
____ L= T T PPy
: | ; ; BOTH CHANNELS
| | | | TIMEDIV: 1us Horizontal OFFSET
_____ : i h — 1 .,
I | 1
I | 20ns 1us 50us 2ms .1s
1 1
T LY Y (M L ; i CHANNEL 1 CHANNEL 2
i i i i [v] Enable Chan [| Chan Tick [v]Enable Chan [| Chan Tic
1 r T T T VOLTS/DIV: 100 mV VOLTS/DIV: 500 mV
I | | 1 ! | = [= et
8] ; \ | | \ i . i (98] |
il ' ' ' : ' ' : ' i) 10my 500my 20V 10mv 500mV
| | | | | | | | E Vertical OFFSET Wertical OFFSET
1 1 1 I 1 1 I 1 I {_} I 1_}
|]] |]] | |
I I I I I I I I E
e ke I e L | | L] e 1 | e | | R b e - o
g | 1l | | | P42 Recording Parameters Trigger Delay
I L £
o et il d Al Sampling Time —
e T e S e T =R i [Enable detay
| | | | | | | | ns
-83 g i | g ; | g d -83 Record Lenght Slope
o :
1 1 1) 1 1) 1 T
1 1 1 1 I 1 o
| | | | Spectrum Analyzer Trigger Source
-128 : | | : | | : : 125 i
T e T e e e e e e e | TR BRSNS (£ RS RS — - o button
i | | | | | | | [v] Enable Analyzer [v] Decibel it
]] I] I I
| | | | | | | | FREQ/DIV: 200 kHz
1 1)) 1)) 1 i |
168 -166 . Tirmer
i 200 400] goo 1000 1200 1400 TEOO 1800 2000 "
[kHz] 1kHz 50kHz 20kHz Trigger: 400[mV]

Figure 99 Four bunches of protons, h=7

Figure 100 presents proton beam with harmonic number of 8. All buckets are filled with
protons. The energy of each bunch is slightly different, therefore periodic amplitude variation
can be noticed every each picks.

A phenomena called bunch splitting takes place during harmonic number change from
7 to 21. The division of bunches during bunch splitting is presented in Figure 101.

pecturm Analyzer (v3) Universal Measurement System with Web Interface
Oscilloscope and Specturm Analyzer (v3)
T T

[cE]

-166 -1 fifi

f'"""éﬁ&!.‘""é%&b‘""éﬁa'n'""'eza'n'""ﬁa'n""';Ea'n"""eﬁ'n'n""'éz'n'n'""*""""'[kHZ] T AN
Figure 100 Eight protons in bucket, h=8 Figure 101 Bunch splitting

Figure 102 presents a situation when only there is only one bucket (h=1) while in Figure 103
the harmonic number is 16 and all the buckets are filled. Figure 104 presents two buckets
filled with protons of different energy (h=4).

Maciej Lipinski 95

Universal Measurement System with Web Interface

Universal Measurement System with Web Interface Universal Measurement System with Web Interface
Oscilloscope and Specturm Analyzer (v3) Oscilloscope and Specturm Anallyzer (wI'S)

I B |

F e e Ay [ttt Rl st At ettt Bt

‘Figﬁre iOZI Single bunéh,

::|_I

>

Universal Measurement System with Web Interface
Oscilloscope and Speciurm Analyzer (v3)

[s Rt

= e

-125 = 124

soqooooacas

Figure 104 Two buckets filled with bunches of varied proton number

5.2 Potential applications

Potential applications of the outcome of this Master Thesis can be divided into three
categories:
e Application of the system as is (without hardware or software modifications) ,
* Application of the system with modifications of software and/or configuration
(content of MMC/SD card),
e Application of the control system (measurement platform with web and SCPI
interfaces) on new or modified hardware platform.

Without hardware modifications, the UMSWI can be used as a very cheap
(~150 EURO) oscilloscope with remote screen and measurement interface (i.e. to observe
protons in Photon Synchrotron). It allows diagnostic measurements in accelerator tunnels
where data acquisition needs to be done remotely due to possible radiation danger.
However, it can be used to perform measurement in any dangerous places where remote
data acquisition is required, i.e. areas where explosion danger is high (mines, factories),
high health-risk zones (chemistry) or radioactive areas (power plants).

Maciej Lipinski 96

Universal Measurement System with Web Interface

Thanks to the design consisting of microprocessor (running Embedded Linux)
connected with FPGA, the same hardware with modified configuration files and applet
(the content of MMC/SD card) can be used to perform the following measurements tasks:

» Advanced digital oscilloscope — appropriate functions need to be implemented
in Java Applet,

» real time spectrum analyzer - implementing FFT algorithm in FPGA,

» software defined radio,

e 2 channels corelator,

» frequency counter,

» any device which use ADCs to measure input.
The UMSWI is also suitable for monitoring. The possibility of data processing (in FPGA
or microprocessor) enables UMSW!I to be configured for self-decision making (i.e. deciding
whether to set up an alarm based on measured values). It is also possible to concurrently
process (in FPGA) data received from ADCs and store the outcome in memory. It can be
used to implement in FPGA algorithms for estimation of intensity or trajectory of particles
beam in accelerators. The advantage of UMSW!I over ordinary digital oscilloscopes in is
the fact that calculations (i.e. trajectory, intensity) can be done on UMSWI in real time.
In oscilloscopes, lag time disables real time calculations. Modification of old and addition
of new FGPA algorithms is very easy — an appropriate file on MMC/SD card needs to be
replaced.

Since the hardware used to build UMSW!I is modular and because the control system
of UMSWI was designed to be as much platform independent as possible, there are many
possible applications of UMSWI which involve hardware modification. In such applications,
UMSW!I is understood as a measurement platform with web and SCPI interface which
enables ready-made mechanism for implementation of control GUI. The recorder module
of UMSWI can be replaced by any other measurement board, thus a new measurement
device with web interface is created. The recorder module can be replaced by board with
radio antenna, water parameters measurement device, weather station, etc. Additionally,
UMSW!I can be used to create a distributed system of measurement devices.

Maciej Lipinski 97

Universal Measurement System with Web Interface

6. Conclusions

Universal Measurement System with Web Interface (Figure 105) was created for
diagnostic purposes in High Energy Physics having in mind current technology trends and
market requirements to enable its wild usage in other places than accelerator tunnels as well.
UMSWI required design and development of flexible, well-thought and easily extensible
system. The objective was achieved. The system fulfilled all the initial requirements and after
being successfully tested by the author in laboratory conditions, it was sent to European
Organization for Nuclear Research (CERN) for further tests and operation.

The essence and main advantage of UMSWI is its build-in web interface and web
server which make the device autonomous, plug & play and very convenient remotely
controlled measurement system. Unlike most of the measurement devices, UMSWI does
not require dedicated and separate server to be controlled via Ethernet. There is also
no need for special client software. Everything is included in the device and the client needs
no more than a web browser to operate it.

The system performance could be further increased introducing optimization in terms
of data acquisition speed and graphic generation. However, such optimisation would
introduce visible improvement only when handling large numbers of samples close
to memory limits (2 x 128K samples).

Development of Universal Measurement System with Web Interface resulted
in creating a control system which is vertically and horizontally flexible. Vertical flexibility
IS recognized by the fact that the UMSWI control system can be ported to different platforms
(various microprocessors) with minor effort (Linux Device Driver porting). Horizontal flexibility
means that the existing control system can be easily extended to perform other
measurements as well as changed to control different hardware. Thus, the “universal”
in device’s name is justified. Simplicity of extensibility was proved during the development,
when the oscilloscope interface was extended by adding spectrum analyzer.

Moreover, the design and solutions used in control system of UMSWI can be a good
basis for developing remote control of any system which needs to be controlled over
the Ethernet. The core of the system can be reused and adapted easily. The software
architecture is platform independent and requires very little resources.

Production of a measurement system based on similar hardware and UMSW!I’s control
system is planed by Creotech Ltd.

Figure 105 Universal Measurement System with Web Interface

Maciej Lipinski 98

Universal Measurement System with Web Interface

Appendix A — Additional information

1. UMSWI hardware analysis

1.1 Data acquisition hardware architecture

Data acquisition and readout is managed by the FPGA. Figure 106 presents a general
overview of acquisition architecture and data flow. The data acquired from ADCs can be read
by FPGA or written directly to SSRAM. It can be also written to SSRAM and read by FPGA
simultaneously. After being processed in FPGA, the data can be send to microprocessor
or/and written to SSRAM. The access of microprocessor to the data stored in SSRAM
is possible only indirectly through FPGA.

e CON O i Control P
e A1 -C LK A2-CLK -
AapDRp15.01 y ALTERA ADDR[18..0]
({ASORM?Z) CYCLONE | SSRAM
— 2 x DATA[13..0]
DATA[15..0] - = ‘M
= =
T 5 5
é ADC ADC
A
Contc! *
100MHz CLK

Figure 106 Acquisition hardware architecture

An important issue, which can be noticed in Figure 106 is the fact that there are different
sources of clock signal. CLK defines clock signal generated by oscillator which is connected
to ADC and FPGA This is a low-jitter clock signal which is required by ADCs. A1-CLK stands
for adjustable clock provided by ARM This is an independent clock signal for ARM’'s data
readout. This clock can be derived by dividing the main ARM clock (180MHz) by the power of
two. A2-CLK stands for adjustable clock generated by FPGA which can be virtually anything,
in particular can be equal to CLK or A1-CLK. Therefore, the following clock domains:

¢ Clock domain imposed by 100MHz clock connected to ADCs - used during data

acquisition,

¢ Clock domain imposed by ARM clock (90MHz) - used during data readout
The clock of SSRAM needs to be switched between 100MHz and 90 MHz appropriately. Two
clock domains disable direct reading of data from ADCs to ARM. It is necessary to store
the data first with the ADC domain frequency (or division) in SSRAM or FPGA memory. After
desired number of data samples have been saved, the data can be read by microprocessor
in it's clock domain. In theory, during either operation (writing to SSRAM or readout) and
in between, the data can be processed in FPGA (i.e. FFT). Processing data in FPGA during
acquisition is the least efficient if we want to store the outcome in SSRAM. This is because,
when writing data to SSRAM without processing, data can be written to SSRAM directly from

Maciej Lipinski 99

Universal Measurement System with Web Interface

ADCs, without going through FPGA. This results in the minimal delay, data can be written
with 100MHz. If the data is processed in FPGA, one data bus needs to be switched between
reading data from ADC to FPGA, and writing data from FPGA to SSRAM. It results in two
times slower process and much greater delay. Data processing or analysis can be done
simultaneously with data writing to SSRAM from ADCs. This is used to implement trigger
by signal level when the signal level is interpreted while writing data to SSRAM.

Another issue indicated in Figure 106 is the fact that address bus between ARM
and FPGA is not as wide as address bus between FPGA and SSRAM. Thus not entire
SSRAM memory space can be directly accessed from ARM.

2. Review of available technologies

2.1 Embedded Operating Systems

The ARM processor (AT91RM92000) installed on the Single Board Computer module
is very popular among embedded systems. It is, of course, possible to develop applications
directly for this processor. However, much better and more popular solution is running
embedded operating system (OS). Developing applications for embedded system running
OD does not require extensive, processor-specific knowledge. It is exactly the same
as on standard PC, just the compilation must be performed for ARM architecture and the
consideration of limited resources must be taken into account. ARM9 processors are
so popular for embedded platforms that there are a few operating systems available for this
processor:

e Linux
o Distributions: uLinux, Denx, Embedian, BlueCat, Cadenux
(open source/proprietary)
o ‘“vanilla” kernel + patches (open source)
 Windows CE (proprietary)
e Symbian OS (proprietary)
« Palm OS (proprietary)

Linux open source distributions:

uClinux - it supports many architectures and forms basis of many network routers, security
camera, DVD or MP3 players.

Cadenux — specialized in Linux for no-MMU ARMY7 and ARM9 processors. The distribution
is build around uClinux.

Denx — open source distribution in form of Embedded Linux Development Kit (ELDK).
It provides software development environments for real-time and embedded systems.
Embedian — a smaller version of Debian, to be used on embedded systems, it retains good
features of Debian (i.e. packaging system).

2.2 Remote Measurement Interfaces

A clear distinction needs to be done between physical layer and abstract layer remote
control standards. The former standards define construction and electrical parameters
as well as communication protocol of physical communication link. General Purpose
Interface Bus (GPIB), Recommended Standard 232 (RS-232), Universal Serial Bus (USB),
VME eXtensions for Instruments (VXI) or Ethernet are means of physically connecting

Maciej Lipinski 100

Universal Measurement System with Web Interface

the controller with the measurement instrument. Different abstract layers can be used
to communicate via this physical connections.

2.2.1 Physical layer
Description based on [55].

General Purpose Interface Bus (GPIB), IEEE-488 — standard developed in 1960s
by Hewlett Packard to facilitate communication between computers and instruments.
It provides specification and protocol for the communication. It is a parallel bus which sends
data in bytes encoded as ASCII characters. It's maximum data rate is up to 8MB/s, it allows
up to 15 devices within the range of 20 m.

Serial Communication (RS-232) - a popular mean of data transfer between a computer
and peripheral devices (i.e. programmable instrument). It uses a transmitter fro sending data
one bit at a time via single communication line to a receiver. It is used for data transfers
when the speed is not crucial or when the distance is long. Unlike GPIB which needs special
board plugged into the computer to enable communication, most of the PCs are equipped
with serial port (however, it is less and less common). Its speed is up to 115.2kb/s
(synchronous: 1Mb/s). Range: 15 m.

Universal Serial Bus (USB) - increasing popular serial bus standard which enables
to connect device to a host computer. It is plug and play, enables to connect up to
127 devices to one host. It enables fast transfers (USB 2.0: 480 Mb/s).

VME eXtenstion for Instruments (VXI) — base on VME standard (IEEE 1014), consists
of mainframe chassis with slots holding modular instruments on plug-in boards. It is popular
in analysis for research/industry control application and data acquisition that require
substantial number of channels (hundreds of thousands).

LAN eXtensions for Instrumentation (LXI) — standard for an instrumentation platform
based on Ethernet technology. It is meant to be modular, flexible, and well-suited for small-
and medium-size systems.

PCI eXtensions for Instrumentations (PXI) - standard based on PCI similarly as LXI
and VXI.

Ethernet — frame-based standard in computer networking technologies for local area
networks (LANS).

2.2.2 Abstract layer

Virtual Instrumentation Software Architecture (VISA) —is an API for communication with
measurement instruments from PC. It is an industry standard implement in products of such
companies as Agilent Technologies and National Instruments. The standard includes
communication over physical links such as GPIB and VXI. VISA cannot be used directly
to control instrument over LAN, however, it is used by Ethernet-enabled standards,
such as VXI.

Maciej Lipinski 101

Universal Measurement System with Web Interface

VXI-11 is an instrument protocol specification which defines a network protocol for controller-
device communication over a TCP/IP network. In principle, it allows an application (client)
to call procedures in the remote measurement instrument (server) as if they were local.
Remote procedures are identified by the client using a unique number. Each message, along
with the argument, encodes this number. According to [56] VXI-11 Devices can be
programmed in two ways:
e Calling VXI-11 compliant VISA library, preferably Windows users, such libraries
are available from National Instruments and Agilent
« Installing the VXI-11's Remote Procedure Call Library (RPCL) and writing programs
with RPC calls,preferably Unix-like OS users

Standard Instrument Control Library (SICL) can be used to control measurement
instruments over GPIB, VXI, RS-232, LAN and other physical links. It is a communication
library that can be used by application written in C or C++ on various operation systems.
Examples of C programs that use SICL, which can be found in [57], show that SICL is mean
of communicating with measurement instruments using Standard Commands
for Programmable Instruments (SCPI).

Interchangeable Virtual Instruments (IVI) defines instrument drivers standard. It builds
on the VXlplug&play specifications. However, it additionally incorporates new features that
address such issues as performance, development flexibility, instrument interchangeability.
It can communicate with instruments across GPIB, VXI, PXI, Serial, Ethernet and USB.

Standard Commands for Programmable Instruments (SCP 1) defines syntax and structure
for programmable measurement and test instruments. It does not define underlying physical
or software layer. It happens that instrument control interfaces are simple wrappers of SCPI
commands, i.e. SICL.

2.3Web technologies to control hardware

In order to control measurement instrument, a web server needs to interface hardware
(in case of UMSWI, via Linux Device Driver). Depending on the web server's capabilities
and the technology chosen there are few possibilities. If the web server embeds script
interpreter (ex. PHP), driver can be accessed directly by opening its file representation.
Otherwise, Common Gate Interface (CGI) can be used to call script (written in any language,
i.e. shell script, perl script) which performs required action.

Common Gate Interface (CGI)

CGI enables to communicate with programs running on the server from the webpage.
With CGl, the Web server can call up a program and pass user-specific data to the program
The program then processes that data and the server passes the program's response back
to the Web browser. Most servers expect CGIl scripts to reside in special directories
(i.e. cgi-bin) and have special extensions (.cgi). When a user opens an URL associated with
CGI script, the client sends a request to the server asking for the file. When the server
recognizes that the address being requested is a CGI program, the server does not return
the file content verbatim. Instead, the server tries to execute the script. The process
is explained in Figure 107 . It is worth mentioning that:

Maciej Lipinski 102

Universal Measurement System with Web Interface

“CGI has the advantage of being a more-or-less platform-independent way
to produce dynamic web content. Other well-known technologies for creating
web applications, such as ASP and server-side JavaScript, are proprietary
solutions that work only with certain web servers” [58]

WWW Browser Server Application
(o cliant]

L2

i i
g Q/o-.--;?.-. :
E s Submit completed form |
' Om -y ‘r/
e .-'III i-'\ ."-.
User G o

.

Cail GG

Figure 107 CGI process explanation

PHP

According to [4], “PHP is the most widely used programming language on the Web, with over
40 percent of all web applications written in PHP”. It is a server-side scripting language
designed to crate dynamic web content. PHP parser needs to be added to web server
to generate HTML pages based on PHP. PHP is very flexible, many libraries are available
which provide ready-made solutions. It is also well suited for Web Graphic generation.
However, in interfacing hardware, the most important is the fact that PHP provides functions
to access, read and write server-side files. It means that hardware can be controlled directly
form PHP scripts by accessing files in /proc or /dev. PHP provides also functions to execute
server-side applications or shell commands (i.e. exec(), system()) which can also be used
to access and control hardware. Since PHP is a server-side scripting language, it is run
on server and the workload of user interfacing, graphic generation or data processing is
on server side.

Java Servlet

According to [58], “servlets provide an elegant, efficient alternative” to CGIl and “an easy-to-
connect-to, Java-based agent on the server” for Java applets. A servlet is a Java class which
can be loaded dynamically to expand server’s functionality. It is run on the server inside Java
Virtual Machine (JVM), therefore is portable and safe. Java Servlets do not require Java
support in the web browser but they do need such support on server side. Java Servlet
can control hardware by reading/writing file (i.e. in /proc file system) or using special library
(i.e. JavaComm) as described in the article [59].

Active Server Pages (ASP)

Microsoft produced technology for generating dynamic web content. It enables HTML pages
to contain embedded code (usually VBScript or Jscript). ASP uses COM components which
are necessary for ASP’s correct performance. ASP support for other servers than Microsoft
Internet Information Server Version 3.0 is commercial. Therefore, ASP can be place among
not-very-platform-independent.

JavaServer Pages (JSP)

Unlike ASP, JSP is an open standard which is implemented by many vendors across all
platforms. JSP’s syntax is similar to ASP’s except that the scripting language is Java.
Itis closely tied with Java servlets.

Maciej Lipinski 103

Universal Measurement System with Web Interface

2.4Web Graphic User Interfaces

The graphic User interface can be generated on the server using Java Servlet
technology or creating graphics using PHP. It can be also done by generating a graphic
image from the data (on the device) and updating the image on the website. The advantage
of such a solution is the fact that the user does not need to have special applications
installed or browser’s plug-ins enabled. However, there are at least three disadvantages:

e appropriate technology has to be ported (cross compiled) for ARM microprocessor,

« the work connected with data computation, interaction with user, etc is done
on a limited-resources device (ARM microprocessor),

« all the user’'s requests are answered by server directly, the exchange of information
between client and server is constant and heavy.

Another solution is to move most of the work to the client. Any computer used by
the client is far more powerful than the ARM microprocessor, so the limitations are less strict.
Moving the work to the client’s side also means that the web server can be very simple.
JavaScript or Java Applet enable graphic generation and user interaction handling
on the client’s side. The drawback of such a solution is the fact that the user needs to have
web browser configured appropriately in case of Java Script. To use Java Applet, a Java
Virtual Machine needs to be installed.

2.5Web servers

The choice between generating GUI on the server or on the client is directly connected
with the choice of the web server. The former solution needs a good web server
with necessary tools (ex, PHP, Perl, Java, etc) the latter needs simple web server.
Among many solutions tested were three worth mentioning:

* Apache Web Server which was successfully cross-compiled for the ARM. Apache
is a widely used server, probably the first choice when developing web applications
on standard computers for websites accessed by man users simultaneously,

. KLone Web Server is a peculiar web server developed especially for embedded
systems. It allows to create dynamic pages by embedding C language in HTML.
What is even more interesting, the KLone server along with developed website
is compiled to a single executable. Such a solution seems quite appealing, however
it has few drawbacks:

o development can become troublesome because any change needs recompilation
of the server, especially that the web server needs to be cross-compiled for ARM,
0 Bugs in the C code embedded in HTML can cause the entire server to crash.
e Web Server provided by Busybox - a very small web server with basic

functionalities (i.e. CGI).
3. Descriptions of chosen solutions

3.1 General architecture of embedded Linux

General architecture of embedded Linux system is the same as architecture
of any Linux system. At this level of abstraction all Linux system are equal. Figure 108
presents all the components of generic Linux system architecture. Kernel is the core
component of the operating system.

Maciej Lipinski 104

Universal Measurement System with Web Interface

“Its purpose is to manage the hardware in a coherent manner while providing
familiar high-level abstractions to user-level software (such as the POSIX APIs
and the other de facto, industry-standard APIs against which applications
are generally written)”[27]

Thanks to such architecture, applications which use the APIs provided by a kernel
are portable among the various architecture. Within Linux kernel, the low-level interfaces
are the part of the kernel which is platform-dependant and needs to be ported to specific
architecture. Low-level services typically handle CPU-specific operations, Basic interfaces
to devices and architecture-specific memory operations. Low-level hardware-dependant
interfaces are managed and controlled by hardware-independent Application Programming
Interfaces (APIs) of High-level abstractions.

“Above the low-level services provided by the kernel, higher-level components
provide the abstractions common to all Unix systems, including processes, files,
sockets, and signals. Since the low-level APIs provided by the kernel are
common among different architectures, the code implementing the higher-level
abstractions is almost constant, regardless of the underlying architecture”.[27]

File systems and Network protocols are good examples of components used by the kernel
to understand and interact with coming from or going to certain devices structured data.

Applications '
[Libraries '

Linux kernel

High-level abstractions i

r File- [Network

systems protocols
Low-level interfaces '

Hardware '

Figure 108 Architecture of a generic Linux system [27]

At least one properly structured filesystem is needed for kernel's proper operations — root
filesystem. Kernel loads the first program to run on the system from root filesystem. It can be
either loaded during the system on start-up into RAM and operated from there, or stored and
operated from hardware storage device.

“It [kernel] also normally relies upon this filesystem [root filesystem] for
certain further operations, such as loading modules and providing each
process with a working directory (though these activities might take place
on other filesystems mounted within the tree that begins with the root
filesystem).” [27]

Maciej Lipinski 105

Universal Measurement System with Web Interface

Very often regular application do not interface kernel directly because kernel's services
are unfit to be used directly by applications. Therefore, libraries and system daemons
are provided to interact with kernel on behalf of applications. One of the main libraries used
in Embedded Linux Systems (instead of GNU C library used in “normal” systems, called
glibc) is uClibc library. Btad! Nie mozna odnalez¢ zrédta odwolania. presents comparison
between glibc and uClibc. It is apparent that usage of uClibc allows to save very precious in
embedded system memory space.

C program Compiled with shared libraries Compiled statically
glibe uClibc glibc uClibe
Plain ““hello world™ 46K 44K 475K 25K
Busybox 245K 231 K 843 K ALK

Figure 109 Benefits of using uClibc library [29]

In most of Embedded Linux Systems, the daemons and Unix utilities (most Unix commands)
are provided by a toolset called BusyBox. It is a very small-size application, single
executable, which provides great functionality.

“BusyBox even includes a DHCP client and server (udhcpc and udhcpd),
package managers (dpkg and rpm), a vi implementation with most of its
features, and last but not least, a web server. This server should satisfy
the typical needs of many embedded systems, as it supports HTTP
authentication, CGI scripts, and external scripts (such as PHP). Configuring
support for this server with all its features adds only 9 KB to BusyBox 1.5.0” [27]

3.2 Model-View-Controller (MVC) design pattern

“The Model-View-Controller (MVC) paradigm is a way to partition your
user interface so it's easier to write and maintain. The idea is that you start with
a model—a set of classes representing the data you're working with. Next, you
construct various views of the data—classes that display the data on the screen.
Finally, you create a controller object that accepts user input and updates
the model or view.” [60]

When an application uses the MVC architecture, it employs three elements to help it bridge
the data and visual models that it uses. These three elements must be created and managed
by the program (Figure 110):
« View: visible GUI which is seen by the user,
¢ Model: abstraction used in the program logic, represents state and nature of visual
objects presented on the screen,
e Controller: enables communication between the model and view components.
It updates the model according to the changes resulting from the interaction with
the user.

Maciej Lipinski 106

Universal Measurement System with Web Interface

FABAR "& Button

y i i

| ; Draws 1 Responds
"‘ | ’*" graphics I to input
\ ' 4+ components : events
v 1 ’

i 5 Y

View Controller

View Controller
displays modifies
models model

Model

Figure 110 MVC architecture [60]

3.3 Observer-Observable paradigm

The Observer-Observable ([60, 61]) pattern consists of Observer listener interface
and Observable base class which are provided by java.util package. An object (i.e. view)
implementing observer interface registers itself as an observer of the object (i.e. model)
which is an observable. Each time the model (observable) changes, all the registers
observers (there can be many views) are updated.

According to [61], Observer-Observable pattern can be used in relation between
the following parts of the application:

* view and controller - the changes in the view cause response in the controller,

« model and view — all the registered views are notified about model’s state change.

The same book mentions different view implementations:

* “model push” vs. “view pull” — the model sends updates to the registered views
or views get information from the model, when it's needed,

e Multiple view targets — more than one view can be registered to the model, thus
the same data can be represented in many ways,

e “Look but don't touch” views — when the view does not provide interaction with
the user.

3.4 Standard Commands for Programmable Instruments (SCPI)

SCPI defines a set of commands to control programmable test and measurement
devices in instrumentation systems. It specifies command structure and syntax, it does not
define underlying hardware and software. Vertical and horizontal programming consistency

Maciej Lipinski 107

Universal Measurement System with Web Interface

is promoted by the standard. Message consistency between instruments of the same class
(vertical) and between instruments with the same functional capabilities (horizontal)
are defined. An example of vertical consistency is using the same command for reading DC
voltage from several different multimeters. Horizontal consistency is using the same
command to control similar functions across instrument classes. SCPI defines specific
command sets for a given measurement functions (i.e. frequency or voltage),
Thus, frequency measurement can be made in the same way in two oscilloscopes made
by different manufacturers. It is also possible for a SCPI counter to make a frequency
measurement using the same commands as an oscilloscope.

SCPI commands consist of set commands and query commands (simply called
commands and queries). Commands change instrument settings or perform a specific action.
Queries cause the instrument to return data or information about its status. Most commands
have both forms. The query form is the same as the set form except that it ends with
a question mark. A command message is a command or query name, followed by any
information the instrument needs to execute the command or query. It consists of five
element types defined in Table 15 and presented in Figure 111 [62]

Symbol Meaning

<Header> Command name. Command is a query if the header ends with a question
mark. It may begin with a colon (;) character.

<Mnemonic> | A header sub function. Most of headers consist of many Mnemonics
separated by colon (%)

<Argument> | A quantity, quality, restriction, or limit associated with the header. Some
command have no argument while others have multiple arguments.
Arguments are separated from the header by a <Space>. Multiple
arguments are separated from one another by <Comma>.

<Comma> A single comma between arguments of multiple-argument commands

<Space> A white space character between command header and argument.

Table 15. Command message elements

Header Comma

"
SAVe:WAVEform CH1,REFA

N TN

Mnemonics | Arguments
Space
Figure 111. Command message elements

SCPI requirements concerning mnemonics’ names:

. Each mnemonic has both a long and a short form. A SCPI instrument shall accept
only the exact short and the exact long forms,
The instrument shall accept both upper and lowercase characters without distinction
between cases.
SCPI commands are based on a hierarchical structure created according to the style
guidelines. The most important of the requirements are listed below:

1. The lowest node should have the broadest base possible,

2. Tree should be as shallow as possible,

3. A complete tree path shall be unique,

4. In general, parameters should only appear at the leaf nodes of the tree.
For an instrument a “dictionary” of commands is implemented.

Maciej Lipinski 108

Universal Measurement System with Web Interface

4. Parameters of digital oscilloscope

Bandwidth — frequency range in which the oscilloscope measurement is accurate.
It is indicated by the frequency at which the displayed signal is attenuated by -3dB (reduces
to 70.7%). Well-designed oscilloscopes (i.e. Tektronix, Hewlett-Packard) tend to have flat
bandwidth in entire frequency range. It means that the attenuation of the signal is close
to 0 even at the specification bandwidth. Often, the specification bandwidth of such
oscilloscopes is much less than its actual bandwidth.

The theoretical bandwidth is based on Nyquist-Shannon sampling theorem which says
that “a signal can be reconstructed [from samples] exactly if the signal is band-limited and
the sampling frequency is greater than twice the signal bandwidth”[63]. It means that
theoretically, to avoid bandwidth degradation in measured signal, oscilloscope must have
a sampling rate two times greater than it's nominal bandwidth. In practice, high performance
oscilloscopes manage to accommodate sampling rate of 2.5 times bandwidth. However,
the mainstream oscilloscopes usually oversample the bandwidth by a multiple of 4x.

[=
(=]
=
2]
-
E 1
'd |
l Aliased frequency
components
fs/d fu fs
Frequency ——

Figure 112 Relation between sampling rate and bandwidth [63]

Vertical Resolution — it is the minimal detectable voltage change, determined by ADC'’s
resolution and the input signal range,

Vertical Sensitivity — the smallest voltage the oscilloscope can detect (typically, 2mV/Div)

Dynamic Range - refers to how well the measurement device can detect small signals
in presence of large signals, it is expressed in decibels (dB)

Dynamic Range (dB) = 2010g(Vmax/Vmin)
Vmax— Maximum voltage being acquired.
Vmin — Minimum resolution that can be seen.
Rule of thumb: 1 bit of resolution ~=- 6 dB of dynamic range (10-bit instrument’s theoretical
maximum dynamic range is 60dB

Accuracy - ability of an instrument to represent the true value of a signal. The achievable
accuracy of an oscilloscope (any measurement instrument) is limited by the resolution of

Maciej Lipinski 109

Universal Measurement System with Web Interface

the ADC. However, the high resolution does not guarantee high accuracy. Factors that
reduce accuracy mostly occur at high and low frequencies.

Gain accuracy - accuracy of amplitude measurement, determines how well oscilloscope
handles high-frequency noise

Offset accuracy — accuracy of offset in DC coupling mode, determines how well
oscilloscope handles low-frequency errors

Horizontal axis resolution - limited by sampling rate. 100MS/sec acquisition rate can
achieve a time resolution of 1/(100MS/sec) = 10ns. Accuracy of horizontal axis can be
reduced by low- and high-frequency errors alike vertical axis. However, this errors are
usually insignificant compared to problems with accuracy of vertical axis.

Time base accuracy - specifies frequency/period measurement instability, is expressed
in parts-per-million (ppm)

Rise time - time needed by the signal to go from a specified low value to a specified high
value. The low value is usually specified as 10% of set height and the high value is specified
by 90% of set height. It describes useful frequency range on an oscilloscope. Pulses with rise
time faster then oscilloscope’s rise time cannot be displayed accurately.

Memory — in most oscilloscopes sampling rate and memory size are intertwined since they
want to fill entire (fixed-size) window with the waveform. In some settings configuration it may
lead to situation where both time and memory are maximized. Since maintaining sampling
rate is more important, entire memory is used. Usually, sampling rate is sustained as long
the scope does not run out of memory to fill the display, otherwise sampling rate
is decreased (bandwidth is therefore memory dependant as well).

In case of UMSWI, sampling rate is always maintained and, if required, the waveform
is smaller than screen display.

Maciej Lipinski 110

Appendix B — FPGA — ARM interface

Example commands Output/input Proc_fs R/W | address | Register Variable in FPGA comment
from/to driver name
data format
Echo 1 > reset 1 reset W 0x...00 ARM_reset asynchronous
Number(decimal) Config R/W 0x...10 Reg01[1..0] | ARM_trig_src[1..0] 0-ARM; 1-ext; 2-
chanl; 3- chan2
Reg01[2] ARM_time_en O-disable; 1-enable
Reg01[3] ARM_slope 0-rising; 1-falling
Echo 16 > cmd ARM Number(decimal) cmd R/W Reg01[4] ARM_ARM 0-idle; 1 - ARM
Echo 32 > cmd Trig Reg01[5] ARM_trigger 0- not trigger; 1-
Echo 48 >cmd ARM + Trig trigger
1 Data acquired state R 0x...20 Reg02[0] ARM_DATA_ACQUIRED 0—not; 1 -yes
2 ARMED Reg02[1] ARM_ARMED 0—-not; 1 —yes
3 Data acquired and armed
Echo 20:0:0 > parameters Len:time:delay parameters R/W 0x...30 Reg03 ARM _record_len[15..0]
Reg04 ARM _record_len[18..16]
0x...50 Reg05 ARM_timer[15..0]
Reg06 ARM_timer[23..16]
0x...70 Reg07 ARM_delay[15..0]
Reg08 ARM_delay[31..16]
startAddr startRDaddr R/W 0x...90 Reg09 ARM_start RD_addr[15..0] Problem with
RegO0A ARM_start RD_addr[18..16] reading,
MASK=0x0FFF
StartAddr stopAddr addressPointers R 0x...BO Reg0B ARM_start_addr_pointer[15..0]
Reg0C ARM_start_addr_pointer[18..16]
0x...DO Reg0D ARM_stop_addr_pointer[15..0]
RegOE ARM_stop_addr_pointer[18..16]
readSingleData R 0x...100 RD_DATA
read2words R WR_DATA

Universal Measurement System with Web Interface

readXwords

R/W

Cat readresult

readresult

Test 0 — special states for writing and reading from
memory
llde->write_ssram->read_ssram->completed(waiting
for data to be read)

For this test data outputted by “readresult” is displayed
differently than normal

0x01 — writing address to the memory

0x11 — writing 0x5555 to even and OXxAAAA to odd
addresses on channel 1 and 0x0000 to channel 2
0x21 — writing 0x5555 to even and OXxAAAA to odd
addresses on channel 2 and 0x0000 to channel 1
0x31 — writing 0x0000 to both channals and all
addresses

OxNumber

Test 1 — everything works as normal, but instead of
reading data from ADC, the data is read from FPGA
(and written to memory),

For this test data outputted by “readresult” is displayed
differently than normal

0x02 — writing address to the memory

0x12 — writing address to channel 1 and 0x0000 to
channel 2

0x22 — writing addresses to channel 2 and 0x0000 to
channel 1

0x32 — writing 0x0000 to both channals and all

addresses

OxNumber

Test 2 — everything works as normal, but instead of
reading data from ADC, the data is read from FPGA
(and written to memory)

For this test data outputted by “readresult” is displayed

OxNumber

test

R/IW

0x...110 regT[0]

ARM_SSRAM_test_0

TestO

Cat readresult:
addr ->> chan1l:
chan2

0x1 ->> Ox2aa: 0x8

regT[1]

ARM_SSRAM_test 1

Test 1

Cat readresult:
addr ->> chanl:
chan2

0x1 ->> 0x2aa: 0x8

regT[2]

ARM_SSRAM_test_1

Test1

Cat readresult:
Chanl: chan2

Maciej Lipinski

112

Universal Measurement System with Web Interface

normal , can be used with applet

0x04 — writing address to the memory

0x14 — writing address to channel 1 and 0x0000 to
channel 2

0x24 — writing addresses to channel 2 and 0x0000 to
channel 1

0x34 — writing 0x0000 to both channals and all
addresses

regT[7..4]

ARM_test_kind

Depending on the
test kind

Maciej Lipinski

113

Appendix C — Example Manual

Below, Oscilloscope and Spectrum Analyzer Manual is presented. This manual is available
on the UMSW!I's website and is presented here as an example. The website provides also
SCPI Manual (with example scripts in Matlab) and information concerning UMSWI's
configuration. The website is included in the CD. It can be also found on author's homepage
[47]

1. JAVA APPLET
The Oscilloscope and Spectrum Analyzer is a Java Applet and you will need Java Virtual
Machine installed and Java enabled in your browser to have it up and running. For details
how to successfully run applet in your browser see [64].The recommended browser
to operate the oscilloscope applet is Mozilla Firefox

2. ONLINE/OFFLINE
Applet automatically detects whether it has connection with the server. If something is wrong
with the connection, it is indicated by red sign Device OFFLINE. If everything is ok, there
should be Device ONLINE in blue.

* ONLINE - good for you, it means that everything is connected and installed properly,
just enjoy using. If you want just to test the applet and you don't have any source
of signal, you can ask it to generate signal:

i. click with right button of the mouse on the screen
ii. select Enable test data
iii. choose which waveform you want to see (affects only channel 2)
iv. use the applet as if there was a signal source connected to the device

* OFFLINE - for tests

i. probably you are using the applet on the author's homepage, this one
is not connected to any hardware

ii. if you are using applet located on the ARMputer and it is indicated that
the applet is OFFLINE, something is wrong :(

3. COMPONENTS OF THE GUI

When you open the Oscilloscope Web page, you will see Screen and Control Panel. These
are all you need during normal operation. Control panel enables you to set acquisition
parameters, start/stop acquisition, adjust the view of the results and decide what should be
displayed on the screen. Screen presents results of measurement acquired with
the parameters you wanted. When you start the applet, the screen is empty. It will stay empty
even after the acquisition if you do not enable any of the channels. Except of screen and
control panel, an auxiliary window can be opened by clicking the screen with right button
of the mouse. Auxiliary Panel provides functions which are rarely, i.e. it enables you to see
raw data. Raw data is are the voltage values which were received from the hardware, scaled
by the factor indicated. Spectrum raw data, is the outcome of Fast Fourier Transform
calculation performed on the raw data.

Universal Measurement System with Web Interface

Auxilary Oscilloscope Device control Device current
controls screen buttons parameters
-------' niversal Vieasuremen stem w 1 Web Interfacq ..------.‘-------.
' joccemmoeshanananssay] ! 5 0
' H K] 1] '
' H H A ' ’
' ! ' .'.'.'.'.'.’-‘*a"."ﬁ?;".'.'.'.'.'
] 0 2 rizonsal
" [} [} [}
‘]
omeeel e A Screen i| : Control.. :
[} :
' Additional) p ' ol © [Oscilloscope
W ¢ vv] view settings
o windows | :_ Id'qet 'I: H Panel o g
L]]
" ll 1] e e sewe e
K i le el UL T
0 ' ' , :
" | | : : " :
M . [}] 2 Hardware
: :I | : .:::::::;‘ 1 parameters
J [} [}
" ’| | : l : :. '
: e ctodvoetassdocnensese® : HE 0
H fekec--alosnssans
' t
(]
Raw Data Display Spectrum Analyzer Spectrum Analyzer
Window screen (optional) view settings

Figure 113 Oscilloscope & Spectrum Analyzer GUI

4. SCREEN
The screen has multiple usage. In initial state it displays nothing but the grid in oscilloscope-
like window. What is currently displayed on the screen depends on the control panel settings,
in general the screen can show:

* Nothing — when none of the channels is enabled

* Input signal to channel 1 or/and 2

* Spectrum of input input signal to channel 1 or/and 2 along with input signal
to channel 1 or/and 2

Spectrum of a given channel is displayed only if the channel is enabled. Along with spectrum
chart, an appropriate spectrum scales on the screen margin is displayed
(depending on the kind of spectrum, it is either mV or dB scale).

By dragging the screen (pressing left button of the mouse and moving the mouse),
the horizontal and vertical position of signals can be changed.

Universal Measurement System with Weh Interface
Oscilloscope and Spect Analyzﬂ‘}(ﬂ),:g Applet version

Signal from

. i — channel 2
(blue)

Signal from
f— channel 1
(red)

[r-n\-/l-. Information about
distance between

‘ Speétrum of

71 ticks” in mVolts
HE < i : »
i 11 channel 1 ittt and time
Ampiituce scale of | |3 o I
mplituge scale o [} ' ! [| ! !
pchanneH -p. | J e = | 5 ' ’ ; 1 :'4- Amplitude scale of
spectrum o td — Spectrum of channel 2 oo channel 2
§ 0 O O ' spectrum
» S0 i [
1500 1] i ‘ Fio §
T I M e == e :
i : _J._ L o
ee-ed® 20 40 60 80 100 120 140 160 180 200 ;,-_ Frequency scale
e oo e o oo oo e e e oo legly of spectrum

Chrzagors Kasprowiez & Mavisy Lipinei

Figure 114 Oscilloscope & Spectrum Analyzer Screen

Maciej Lipinski 115

Universal Measurement System with Web Interface

The oscilloscope enables to measure distance in mV and time between two points
on the screen (called “ticks”). It can be enabled on the Control Panel. The mechanism
is explained in the figure below.

| i
46.999us |

Chan 1

y iﬁz:ﬂm\f :
| 1

Figure 115 Oscilloscope’s “Ticks”

Once the “ticks” are enabled (for specific channel), the cursor of the mouse is fallowed on
the screen by “X”. The fist “X” is red, it is the starting point for distance calculation. When
a place on the screen is clicked, the red “X” is left in this place and a blue “X" appears.
The blue “X” is accompanied with the information about the channel for which the “ticks” are
enabled (different channels can have different volts/div settings, thus the measurement
of distance is different), the voltage and time measured in the way explained in the figure
above. In working with “ticks” the following rolls must be remembered:
* The tick which follows mouse cursor can be set in a place on the screen
by clicking the screen.
* When both ticks are set in a position on the screen (the mouse cursor is “free):
o If red tick is clicked with the mouse cursor, positions of both “ticks” are
reseted and red “X” starts to follow the cursor
o If any place, except red “X”, is clicked, position of blue “X” is reseted, and
it starts following the mouse cursor.
« When the left mouse button is kept pressed, the position of displayed signals can
be changed

5. CONTROL AND AUXILIARY PANELs

Control panel Auxiliary panel
Device ONLINE Acqured Data Parameters B CE
uxil... |- X
=P Newdata (disarmed) | iicecceesssssssssas; e
e A ! } Sampling time: 10[ns] + tillay
'| SINGLE || NORMAL | ! Trigger Delay: 0 (s} H——@ i q_@
=t ! ! RecordLenghit: 1310720[ns] |
i auto STopge bl | Sl lisaben il oy 4
L P — Scalling Factor
BOTH CHANNELS =
TIMEDIV: 50 us Horizontal OFFSET e
(: — L c = g | showRawData 4—@
20ns fus 50us 2ms .1s | Test Data Enable <_.
CHANNEL 1 CHANNEL 2 1
} |
I Enable Chan [Chan Tick| (] Enable Chan [] Chan Tick \ 1
'
VOLTSDIV: 50 mV VOLTSDIV: 100 my i

10mv 500mv 20¢ 10mv 500mv 20v

Ong
@+
. - Vm:n;i(iFFS-Ef = VEﬂi?ﬂlGFF%’
®—
@

Recording Parameters Trigger Delay
e D)
= Sampling Time — T
10=ns L] Enable delay g .

Record Lenght Slope:

D,

1310700hs 7 e 1

= Falling edge ® Rising edge
ponsustn 8 inie | ()

O AL et e

f : :

e '

e
@—’ (] Enable Analyzer [[Degibel § BON :
C FREQDIV: 20 kHz (O chant O il .®

' 6;&: 50KHZ 20kHz Trigger: O[mv]

Figure 116 Oscilloscope and Spectrum Analyzer’s control and auxiliary panel

Maciej Lipinski 116

13.
14.
15.

16.
17.

18.

19.
20.
a. Button — acquisition is started when “Trigger” button is pressed,
b. Chan2 — acquisition is started when signal on channel 2 fulfils “trigger conditions”

21.
22.
23.
24.
25.
26.

27.

Universal Measurement System with Web Interface

Shows whether Applet is connected to the server and hardware (see 1).

State of the device:

IDLE — initial state,

SINGLE —acquisition is running in single mode,

AUTO - acquisition is running in auto mode,

NORMAL - acquisition is running in normal mode,

STOPPED - when acquisition was forced to stop by clicking STOP,
Acquiring data — when data is being sent from the server to the applet,

New data (disarmed) — Acquisition stopped after successfully acquiring data.
nable to control acquisition:

SINGLE - data is acquired one time after trigger occurred,

NORMAL - data is acquired each time the trigger occurs until stopped with STOP
button,

AUTO - data is acquired continuously, regardless of the trigger occurrence, until
stopped with STOP button,

d. STOP - stops data acquisition.

Set TIME/DIV for both channels.

Enables measurement of voltage and time with “ticks” for channel 1.

Enables display of channel 1.

Sets VOLTS/DIV for channel 1.

Sets vertical position of channel 1 signal .

Sets sampling time (range: 10ns — 250us).

cpme"eo0 T

o

. Sets record length (maximum record length depend on the sampling time: recLen=

131072 * samplingTime).

. Changes spectrum scale from mV to dB.
. Enables spectrum analyzer — spectrums of enabled channels are displayed

on the screen .

Sets FREQ/DIV .

Changes horizontal position of spectrum.

Displays parameters set during latest acquisition — the data which is displayed
on the screen was acquired with this parameters set.

Changes horizontal position of signals.

Sets delay time in [ns] — delay time is an interval between trigger occurrence and
acquisition start.

Enables delay — it is hot enough to set the delay time in 17, it needs to be enabled
to here.

Sets the edge on which trigger should occure.

Trigger source:

(trigger level and edge),
Ext - acquisition is started when falling/rising edge is detected in external signal.
Starts acquisition when trigger source is set to “button”.
Sets trigger level when trigger source is set to “chan 1" or “chan 2".
Send reset signal to FPGA logic.
Data read from the device is multiplied by this factor.
Displays “raw data” in a separate window.
Enables to test the applet without any source of signal — signal is generated by
the applet itself as if when offline.
enables to choose kind of generated signal on channel 2 (only).

Maciej Lipinski 117

Universal Measurement System with Web Interface

Appendix D — Developer’s web page

This is a content of the web page existing on author's web site [65] which is meant for
UMSW!I developers. It contains all the codes and binaries used by the system and explains
how to used them. It is included on the CD as well.

1 Downloads:

« Binaries (Download):

0 loaderML.bin - Bootloader, source code (modified from TWarm, which in turn was
modified from Flabio Ribeiro (etc.) - this bootloader was modified to start the Linux
directly. It means that, in normal operation, the zlmage is copied from flash and run
by bootloader (not U-Boot), it is recommended to upload new zimage to flash using
bootloader. In case of development U-Boot can be started by choosing menu option 4

o zlmageML - kernel + rootfs in one zImage (Linux-2.6.19, taken from TWarm, modified
configuration, customized rootfs, includes all the UMSW!I's utilities in /usry/AMRsocpe
folder)

« Configuration (Download):

o busybox.config - configuration used for Busybox-1.00

o kernel.config - configuration used for Linux-2.6.19 (patched and modified by Poles
in TWarm

» Oscilloscope and Spectrum Analyzer Java Applet source code (Download) - the project
was developed in Eclipse, it needs javac at least 1.5. It was painfully learnt that earlier
version are not enough. The compilation should be done under Linux.

o src/ - folder with sources

o bin/ - folder with compiled classes
- Bootloader's source code (Download)
» SCPI server (Download):

o src/ - folder with sources

o doc/ - documentaton generated by doxygen, available here as well

0 scpi_server - binary (to run SCPI Server on port 2020 : ./scpi_server -s 2020)
» Linux Device Driver providing communication with FPGA (Download):

o src/ - folder with sources

o fpga.ko - driver compilled as module (to instal issue: insmod fpga.ko)

 FPGA Logic (Download) - it is a project in ALTERA Quartus Il - the entire VHDL code is
in the file: acquisition_controller.vhd, the binary file is here

» FPGA configuration application (Download)

o src/ - folder with sources
o config - complied binary (to load mag_fpga.rbf: ./config mag_fpga.rbf)

« MMC/SD content(Download) - Content of MMC/SD card is initially equal to
/usr/ARMscope folder in rootfs,

* Root file system (Download)

2 Development environment

The project is being developed with the workstation running Debian distribution of Linux
(GOOD BLESS Debian :). The cross-compilation tool used during the development was
intalled as a debian package using Synaptic Package Manager . The package was prepared
by Free Electrons. | followed this, see Lab 3- Cross-compilation. Remember to export:

export PATH=/usr/local/uclibc-0.9.28-2/arm/bin/:$PATH

export CROSS_COMPILE=arm-linux-
export ARCH=arm

Maciej Lipinski 118

Universal Measurement System with Web Interface

3 MMC/SD card content
Tools and data which are used by the system are stored in /usr/ARMscope folder and
on MMC/SD card. Its organization is presented below:

-ARMscope
-data
-FPGAconfig
-FRGAdriver
-SCpl_server
-scripts
“lilel

|

[
|--
o
[=3
| ==
B
|=-=--cgi-bin

|===mne- oscilloscope
|=------systemConfig

Figure 117 MMC/SD card content

FPGAconfig/ holds the .rbf file with FPGA logic configuration and a small application which
configures FPGA.

« FPGAdriver/ holds FPGA Linux Device Driver compiled as a loadable module
and a script which loads the driver and creates entry in /dev
« scpi/ _server holds SCPI server application
« www/ - the UMSWI website
o cgi-bin/ - CGI scripts
= oscilloscope/ - used in applet-driver communication
» gsystemConfig/ - used for system configuration
o oscilloscope/ - oscilloscope and spectrum analyzer applet
o data/ - data available on the website, i.e. Matlab scripts
o 1images/ - images used on the website
« data/ - holds information which needs to be stored between boots, i.e. default IP
» start is a script which starts UMSW!I utilities

4 Linux start-up

During the development phase, both loaders (Bootloader and U-boot) were used. U-boot
passes to kernel boot parameters and PHY parameters (i.e. MAC address). To enable
booting the kernel and root file system from flash memory without U-Boot, maodifications
in BusyBox’'s configuration and TwWARM's bootloader were needed. A tool enabling MAC
address to be set when Linux is on (Networking Utilities ---> ifconfig/Enable option "hw"
(ether only)) was added in BuysBox configuration and Linux start-up script (/etc/inittab) was
appended with the line which sets up MAC address. The loader was modified to include

default Linux start after short delay. Modified loader's menu in presented in the picture .

Starting u-boot is still possible , since it can be useful for further development and there
is enough space in the flash memory. However, a modification was made to the address

in which the u-boot is started.

Initializing SDRAM
Universal Pleasurement Sytem - by Maciex
32bit SDRAM ZxHynix HYSTWSG61628C

: Upload toader to Dataflash with vector & meodification.
: Uplead u-boot to Datatlash.

: Uplead linux to Dataflash

: Start U-boot

¢ Start linux

: S5tart u-boot and linux

i SDRAM test

bt =y L O R FT R)

Figure 118 Bootloader's menu

Maciej Lipinski 119

Universal Measurement System with Web Interface

UMSWI specific startup operations are done in three steps:

« 1. The MMC/SD card with UMSWI utilities is attempted to be mounted
in /Jusr/ARMscope/ location. The /usr/ARMscope/ folder hold all the custom-made
UMSW] utilities. The mounting is done in /etc/init.d/rcS system initialization script

« 2. httpd web server is started as "respawn" (/etc/inittab file)

« 3. /usr/ARMscope/start script is called (in /etc/inittab)

. This script is used for

the UMSWI utilities initialization and can be modified by the user easily. It starts
the following initialization (by calling appropriate scipts):

(0]

[0}
[0}
(0]

Configures FPGA (config_ FPGA script)

Loads FPGA driver (load_driver script)

Starts SCPI Server if Enabled (start_scpi script)
Sets the default IP (set_IP script)

The following Linux start-up were prepared appropri ately

/etc/inittab

letc/inittab

#

Copyright (C) 2001 Erik Andersen <andersen@codepoet.org>

#

Note: BusyBox init doesn't support runlevels. The runlevels field is
completely ignored by BusyBox init. If you want runlevels, use

sysvinit.

#

Format for each entry: <id>:<runlevels>:<action>:<process>

#

#id == tty to run on, or empty for /dev/console

runlevels == ignored

action == one of sysinit, respawn, askfirst, wait, and once
process == program to run

Startup the system

null::sysinit:/sbin/ifconfig ethO hw ether 00:08:03:7a:3e:16
null::sysinit:/sbin/ifconfig lo 127.0.0.1 up

null::sysinit:/sbin/route add -net 127.0.0.0 netmask 255.0.0.0 lo
null::sysinit:/sbin/ifconfig eth0 192.168.1.101 up

null::sysinit:/sbin/route add -net 192.168.1.101 netmask 255.255.255.0 ethO

main rc script
::sysinit:/etc/init.d/rcS
#start ARMscope utilities

null::sysinit:/usr/ARMscope/start
null::respawn:/usr/sbin/httpd -h /usr/ARMscope/www/

Maciej Lipinski 120

Universal Measurement System with Web Interface

Set up a couple of getty's
#tty1::respawn:/bin/runterm.sh
#tty2::respawn:/sbin/getty 38400 tty2

Put a getty on the serial port
ttyS0::respawn:/shin/getty -L ttySO 115200 vt102
#::respawn:/bin/sh

#::respawn:/bin/login -- root

#run application
#ttyS0::once:/mnt/flash01/startup

set up stuff for logging
#tty4::respawn:/usr/bin/tail -f /var/log/messages

Stuff to do for the 3-finger salute
..ctrlaltdel:/sbin/reboot

Stuff to do before rebooting
null::shutdown:/binflumount -a -r

letc/init.d/rcS

#!/bin/sh

mount -t proc none /proc
#mount -t devpts none /dev/pts

#echo 'mounting /usr/ARMscope/'

sleep 3

mount -t vfat /dev/immcblkO /usr/ARMscope/
sleep 3

Sleep is needed to allow Linux to "see" the mmcblkO device and later to mount it.
/etc/fstab

letc/fstab: static file system information.

#

<file system> <mount point> <type> <options> <dump> <pass>
/dev/root / auto defaults,errors=remount-ro 00

proc /proc proc defaults 00

/devimmcblkO /usr/ARMscope vfat defaults 00

5 ARMscope package
Everything to build =zlmage should be available here: Download(270MB !ll)

This package is located (not entirely legaly) on EiTl's server mion, the transfer is not good
and it may be deleted by admin at any time

Maciej Lipinski 121

Universal Measurement System with Web Interface

If you manage to download it (CONGRATULATIONS), this is how the zImage can be
created:

5.1 Development environment

See 2 Development Environment to know how to install cross compilation toolchain.
Don't remember to export environmental variables:

$export PATH=/usr/local/uclibc-0.9.28-2/arm/bin/:$PATH
$export CROSS_COMPILE=arm-linux-
$export ARCH=arm

Things will need to be done as root ($su). The ARMscope package needs to be untarred in
convenient location, in my case in /home/maciex/armbuild ($tar -xvvf armscope.v8).
The package contains the following stuff:

« linux-2.6.19 - patched, appropriately modified and configured kernel

» busybox-1.00 - configured Busybox

- config - configuration files for Linux and Busybox

» loader_ML - source code of modified Bootloader

- root_fs - root file system, the one which is compiled into zimage

« SD_card - content which should be copied to SD card

e binaries - compiled Bootloader and zimage
5.2. Configuration and compilation of busybox
If Busybox needs to be compiled (usually it's not the case), the location of its instalation
needs to be indicated.

$cd armscope.v8/busybox-1.00/
$make menuconfig

Set location of root_fs (in my case: /home/maciex/armbuild/armscope.v8/root_fs)
in Instalation Options

$make clean
$make

5.3. Configuration and compilation of kernel
Before compiling kernel, its configuration needs to be change, so that the root_fs folder
location is indicated

$cd armscope.v8/linux-2.6.19/
$make xconfig

Go to: General setup --->Initramfs source file(s): and set the location (in my case:
/home/maciex/armbuild/armscope.v8/root_fs)

Save changes.

$make clean
$make

zlmage is in: arch/arm/boot

Maciej Lipinski 122

Universal Measurement System with Web Interface

Appendix D — Additional Materials on the Accompanyi ng CD

Bibliography/ All the articles, datasheets, information which is in the
“Bibliography” list and could be legally downloaded

Binaries/ Binaries for UMSWI

SD_card/ Content of MMC/SD card which should be insterted to
the device

Tests Test data, Matlab scripts with results interpretation

Development/ Set of tools, codes etc which can be used to further
develop UMSWI

Environment/ Patched and configured Linux kernel, Busybox, u-boot,

Bootloader, prepared root file system. With very few
changes in configuration (setting the right paths) it can
be used to create binaries for UMSWI

FPGAconfig/ Application used for FPGA configuration
bin/ Binary
src/ Source code
FPGAdriver/ FPGA Linux Device Driver — used for communication
between Linux User Space and FPGA Logic
bin/ Cross-compilled Linux Module
src/ Source code
doc/ Doxygen generated documentation
FPGAlogic/ FPGA logic including Communication and Data
Acquisition Management Logics
bin/ rbf file
src/ VHDL source code
QuartusProject/ | Project in Quartus used for FPGA logic development
(with pins assigned)
JavaApplet/ Oscilloscope and Spectrum Analyzer Java applet
bin/ Binaries (compiled under Linux with java version
“1.5.0 14"
src/ Source code
EclipseProject/ | Project in Eclipse used for applet development
doc/ Javadoc documentation
SCPIserver/ SCPI Server
bin/ Crosscompiled for ARM
src/ Source code
doc/ Doxygen generated documentation
WWWforDevelopers/ UMSWI website as is on author's homepage, it includes
additional page for developers
WWWforUMSWI/ UMSWI website embedded in the device
MaciejLipinski.doc Master Thesis (MS World)
MaciejLipinski.pdf Master Thesis (pdf)
UMSWIwebsite dsg\(/)i::tg;t to UMSWI website (as is provided by the

Shortcut to developers’ UMSWI website (as is on the
authros’s website)

UMSWIdevelopersWebsite

Maciej Lipinski 123

Universal Measurement System with Web Interface

Appendix E — List of Figures

Figure 1 e*Scope basic mode

Figure 2 e*Scope advanced mode

Figure 3 Remote control of Agilent Analyzer

Figure 4 BenchLink applet

Figure 5 BitScope instrument and GUI

Figure 6 BitScope Model 100 architecture

Figure 7 UMSWI architecture and dataflow

Figure 8 General UMSW!I architecture

Figure 9 UMSWI architecture

Figure 10 UMSW!I architecture

Figure 11 Acquisition and readout control and dataflow

Figure 12 UMSWI architecture

Figure 13 Communication between FPGA and ARM

Figure 14 UMSWI architecture

Figure 15 Choice of technologies for Web Interface of UMSWI []
Figure 16 Oscilloscope and Spectrum Analyzer Web architecture
Figure 17 UMSW!I's architecture according to MVC

Figure 18 Web User Interface architecture

Figure 19 UMSW!I architecture

Figure 20 SCPI example command

Figure 21 SCPI server architecture

Figure 22 UMSW!I architecture [31]

Figure 23 Layout of cross-development environment [26].
Figure 24 UMSWI development setup

Figure 25 root filesystem hierarchy

Figure 26 Busybox configuration

Figure 27 Linux kernel configuration

Figure 28 Booting sequence with initramfs [, page 73]

Figure 29 Modified loader’'s menu

Figure 30 /etc/init.d/rcS system initialization script

Figure 31 /etc/inittab file

Figure 32 /usr/ARMscope/start script

Figure 33 UMSWI utilities organization

Figure 34 Data acquisition and readout design

Figure 35 Shows how to connect a 16-bit device without byte access on NSC2 []
Figure 36 Interpretation of NRD/NWR Setup, Pulse Length and NWR/NRD Hold parameters
Figure 37 Communication Logic flowchart

Figure 38 FPGA-ARM communication test

Figure 39 FPGA-ARM communication test

Figure 40 ARM-FPGA interface

Figure 41 Finite state machine

Figure 42 Measured data flow

Figure 43 Trigger detection process

Figure 44 File operations structure

Figure 45 Structure which represents FPGA device.

Figure 46 Structure storing acquisition parameters

Figure 47 Function which generates data when /proc/fpga/cmd file is read

Maciej Lipinski 124

Universal Measurement System with Web Interface

Figure 48 Implementation of start method in the seq_file interface
Figure 49 Implementatin of seq_next

Figure 50 seq_file show method which outputs measurement data to user space
Figure 51 Seq_operations structure

Figure 52 File operations structure

Figure 53 Proc open method

Figure 54 Implementation of write_proc function

Figure 55 procfs_register function

Figure 56 ioctl driver method

Figure 57 ioctl data structures

Figure 58 2 words (32-bits) FPGA 10 functions

Figure 59 Using FPGA IO functions

Figure 60 Implementation of read/write ARM register functions

Figure 61 Example CGI scripts with a detailed description [31].

Figure 62 Design of UMSWI web site layout and structure

Figure 63 MVC implementation design

Figure 64 Class diagram of Model related classes

Figure 65 Implementation of HTTP Tunnelling and GET requests

Figure 66 Forming URL request which sends parameter to the hardware
Figure 67 Final GUI design

Figure 68 UML Class Diagram of View-related classes

Figure 69 UML Diagram describing applets’ hardware interfacing []
Figure 70 UMSWI configuration and management web page layout
Figure 71 Example Java Script script using CGI

Figure 72 SCPI command message elements

Figure 73 SCPI Server design

Figure 74 Communication layers

Figure 75 Command structure

Figure 76 C implementation of SCPI dictionary

Figure 77 Defining nodes relations and function associations

Figure 78 Template of function implementing command’s logic

Figure 79 Example SCPI log file

Figure 80 Explanation of parsing and decoding process

Figure 81 Debugging FPGA

Figure 83 Matlab test of SCPI Server

Figure 84 Test set-up

Figure 85 First amplitude accuracy test (final_test 1.m)

Figure 86 Amplitude attenuation for high frequencies (final_test_2.m)
Figure 87 Amplitude attenuation at 10Mhz for various amplitude values (final_test_3.m)
Figure 88 Offset error

Figure 89 Minimal input voltage test at 10 Hz

Figure 90 Minimal input voltage test at 10 kHz

Figure 91 Signal frequency and period relative error(final_test_4.m)
Figure 92 Rising time measurement (final_test 5.m)

Figure 93 Spectrum analyzer test (final_test_6.m)

Figure 94 Frequency analysis done with Matlab script (myFFTplot_1.m)
Figure 95 Frequency analysis conducted with UMSWI Spectrum Analyzer
Figure 96 Sine and square signal measurement at 10 MHz and 20 MHz
Figure 97 Input signal exceeding voltage range

Figure 98 Acceleration of particles with AC voltage radio frequency RF [].

Maciej Lipinski 125

Universal Measurement System with Web Interface

Figure 99 Four bunches of protons, h=7

Figure 100 Eight protons in bucket, h=8

Figure 101 Bunch splitting

Figure 102 Single bunch, h=1

Figure 103 All 16 buckets full

Figure 104 Two buckets filled with bunches of varied proton number
Figure 106 Acquisition hardware architecture

Figure 107 CGI process explanation

Figure 108 Architecture of a generic Linux system [27]

Figure 109 Benefits of using uClibc library [29]

Figure 110 MVC architecture [60]

Figure 111. Command message elements

Figure 112 Relation between sampling rate and bandwidth [63]
Figure 113 Oscilloscope & Spectrum Analyzer GUI

Figure 114 Oscilloscope & Spectrum Analyzer Screen

Figure 115 Oscilloscope’s “Ticks”

Figure 116 Oscilloscope and Spectrum Analyzer’s control and auxiliary panel

Figure 117 MMC/SD card content
Figure 118 Bootloader's menu

Maciej Lipinski

126

Universal Measurement System with Web Interface

Appendix F — List of Tables

Table 1 Hardware components of UMSWI

Table 2 UMSWI development tools

Table 3 FPGA logic design components according to frequency affiliation
Table 4 Communication SMC settings

Table 5 Interpretation of Wait State parameter

Table 6 Acquisition process

Table 7 Description of FSM states.

Table 8 Drivers structure

Table 9 ioctl/proc interface

Table 10 SMC configuration

Table 11 GET requests: _name__ is the name of hardware parameter
Table 12 Devices used during tests

Table 13 Test of Spectrum analyzer

Table 14 UMSW!I parameters

Table 15. Command message elements

Maciej Lipinski

127

Universal Measurement System with Web Interface

Bibliography

[1] Linksys by Cisco web site: www.linksysbycisco.com
[2] Livebox by TP.SA web site: www.tp.pl
[3] S. Gundavaram, CGI Programming on the World Wide Web, First Edition,O Reilly,1996
[4] K. Tatroe, R. Lerdorf, P. Maclntyre, Programming PHP, 2" Edition, O’Reilly, 2006
[5] Tektronix, TG700 Remote Contro land Connectivity
[6] Tektronix web site: http://www.tek.com
[7] Tektronix, e*Scope Remote Control Puts Network-Connected Oscilloscope on Your PC
Desktop
[8] Tektronix’s e*Scope Server page: http://connect.tek.com/escope
[9] Agilent, BenchLink Web Remote Control Software for the PSA Series Spectrum
Analyzers, ESA-E and ESA-L Series Spectrum Analyzers, E7400A Series EMC
Analyzers * Option 230
[10] Agilent web site providing BenchLink Web Control Software trial version :
http://wireless.agilent.com/videos/econtent/Remote/
[11] BitScope official web site, http://www.bitscope.com/
[12] BitScope, BitScope 50 Pocket Analyzer
[13] PowerPC, http://mww.power.org/home
[14] ARM http://www.arm.com/
[15] Infiniium 800 Series Oscilloscopes
[16] Altera Ltd. http://www.altera.com/index.jsp
[17] Xilinx, http://www.Xilinx.com/
[18] ATMEL http://www.atmel.com/
[19] Lattice Semiconductor Corporation, http://www.latticesemi.com/
[20] Creotech Ltd. www.creotech.pl , Indiry Gandhi 35/226, 02-776 Warszawa
[21] ALTERA, Cyclone FPGA Family, 2003
[22] Analog Devices, 10-bit, 65/80/105 MSPS, 3V A/D Converter
[23] ISSI, 128K x 32, 128K x 36 Synchronous Pipelined Static RAM, 2004
[24] TANGO, website: www.tango-controls.org
[25] Experimental Physics and Industrial Control System, website: www.aps.anl.gov/epics
[26] C. Hallinan, Embedded Linux Primer: A practical, Real-World Approach, Prentice Hall,
2006
[27] Karim Yaghmour, Building Embedded Linux Systems, O'Reilly, 2003
[28] P.Raghavan, A. Lad, S. Neelakandan, Embedded Linux System Design and
Development, Auerbach Publications,2006
[29] Thomas Petazzoni, Michael Opdenacker, Embedded Linux kernel and driver
development, Free Electrons, 2008, http://free-electrons.com/
[30] J. Corbet, A. Rubini, G. Kroah-Hartman, Linux Device Drivers, Third Edition, USA 2005
[31] Lipinski M. and Kasprowicz G. (2009). Universal Measurement System with Web
Interface. R.S.Romaniuk, K.S.Kulpa (ed.), Photonics Applications in Astronomy,
Communications, Industry, and High-Energy Physics Experiments 2009; vol.7502.
Proc.SPIE, USA
[32] Busybox Project homepage www.busybox.net/
[33] Craig Hollabaugh, Embedded Linux: Hardware, Software, and Interfacing, Addison
Wesley, 2002
[34] Wookey and Paul Webb, Guide to ARMLIinux for Developers, Aleph One Ltd., 2002
[35] Free Electrons Embedded Linux Experts, http://free-electrons.com/
[36] Pelos, TWARM Atmel AT91RM9200 Eval Board, www.twarm.pelos.pl
[37] R. Russell, D. Quinlan, C. Yeoh, Filesystem Hierarchy Standard, FHS Group, 2004

Maciej Lipinski 128

Universal Measurement System with Web Interface

[38] The Linux Kernel Archives, http://kernel.org

[39] AT91 Linux 2.6 Patches, http://maxim.org.za/at91 26.html

[40] M. Odpenacker, T. Petazzoni, Embedded Linux kernel usage, Free Electrons, 2009,
http://free-electrons.com/

[41] Das U-Boot — the Universal Boot Loader, http://www.denx.de/wiki/U-Boot

[42] RedBoot Debug and Bootstrap Firmware, http://www.ecoscentric.com/ecos/redboot.shtml

[43] MicroMonitor, http://microcross.com/html/micromonitor.html

[44] Darrel Harmon’s Homepage: http://dlharmon.com/

[45] ATMEL, ARM920T-based Microprocessor: AT91RM9200

[46] Eric A. Meyer, CSS: The Definitive Guide, 3" Edition, O'Reilly Media, Inc.

[47] Development website of UMSWI: http://home.elka.pw.edu.pl/~mlipins1/myWeb/index.html

[48] Tsan-Kuang Lee Sound Spectrum Java Demo, http://www.ling.upenn.edu/~tklee/Projects/dsp/

[49] Customized J2EE training, Using Applets as Front Ends to Server-Side Programs, Marty
Hall, 2007

[50] Lipinski M. and Kasprowicz G. (2009), Control of “Universal Measurement System with
Web Interface” as an example of universal embedded system control, paper and
presentation at ICSE2009 Conference, UK

[51] Quartus Il Handbook Version 9.0, Altera Corporation, 2009

[52] MatLab — produced by The MathWorks Company, www.mathworks.com

[53] European Organization for Nuclear Research, http://www.cern.ch

[54] Shin-ichi Adachi, Pump-Probe Experiment, Cheiron 2007

[55] J. Travis, J. Kring, LabVIEW for everyone: graphic Programming Made Easy and Fun,
Prentice Hall, 2006

[56] VXI-11 TUTORIAL and RPC Programming Guide, ISC Electronics

[57] Standard Instrument Control Library, User’s Guide, Test & Measurement Systems Inc.,
2003

[58] Jason Hunter, Java Servlet Programming, 2™ Edition, O’Reilly Media, Inc., 2003

[59] D. Riekhonf, K. Fligg, How to Control a Robot Over the Internet, Sys-Con Media, 2000

[60] Mark Wutka, Special Edition Using Java 2 Enterprise Edition, QUE, 2001,
http://csis.pace.edu/~bergin/mvc/mvcqui.html

[61] Stephen Sterling, Olav Massem, Applied Java Patterns, Printice Hall, 2001

[62] Tektronix Prorammer Manual, TDS 200-Series Digital Real-Time Oscilloscope

[63] Phil Stearns, Sampling rate’s impact on oscilloscope bandwidth, Electronic Products,
www.electronicproducts.com

[64] How to run Java Applet in your Web browser,
http://web.cecs.pdx.edu/~ps/CapStone03/dynvis/getplugin.htm

[65] UMSWI developer’s web page,
http://home.elka.pw.edu.pl/~mlipins1/myWeb/developers.html

Maciej Lipinski 129

