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Abstract 
 
Universal Measurement System with Web Interface 
 

Modern trends in measurement instrument development include miniaturization 
and remote control. Remote control interfaces offered by measurement devices 
increasingly often include Graphic User Interface(GUI) which reflects the appearance 
of local user interface (i.e. screen, buttons). The later is one of the limitations 
in miniaturization. More and more often, measurement devices are used only 
remotely, in which case, the local interface is unnecessary or even unwanted. 
Instruments controlled by remote GUI displayed using a PC or laptop seem to be 
a new direction in the development of measurement devices. 

Universal Measurement System with Web Interface (UMSWI) was created for 
High Energy Physics, i.e. accelerator diagnostics. UMSWI’s hardware (commercially 
available) is a small, modular, embedded system, designed according to modern 
trends. It incorporates powerful microprocessor (capable of running embedded 
operating system) and Field Programmable Gate Array (enabling fast, concurrent 
data processing). In order to efficiently use the hardware resources and create 
a state-of-art measurement instrument, which follows modern trends, a control 
system (software and FGPA logic) needed to be created, the creation preceded 
by in-depth research of existing solutions and available technologies.  

This thesis is a theoretical and practical study of UMSWI’s control system which 
enables to manage the hardware and conduct measurement providing web-based 
and Standard Commands for Programmable Instrumentation (SCPI) interfaces. 
The project included implementation of simple digital oscilloscope and spectrum 
analyzer functionalities and GUIs. The device’s innovative character is determined 
by the fact that no dedicated server or client software is required to operate it. Since 
the measurement system is simultaneously a server, it can be connected directly 
to an intranent, Internet or PC/laptop and accessed using only web browser.  

Moreover, the control system, which has been created, enables easy 
extensions (i.e. implementation of frequency counter) and the modular hardware 
architecture allows to change the quantities measured (i.e. instead of using recorder 
module with Analog-to-Digital Converter, a weather station can be installed). Further 
more, the control system architecture is platform-independent and the system can be 
ported to any microprocessor capable of running Embedded Linux. Such features 
highlight system’s universality. 
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Streszczenie 
 
Uniwersalny System Pomiarowy z Interfejsem Webowym (USPIW) 
 
 Znaczenie zdalnego sterowania jest coraz większe i permanentnie rozszerza 
się spektrum jego zastosowań. Urządzenia pomiarowe w tym względzie nie stanowią 
wyjątku. Zdalnie sterowane instrumenty pomiarowe są coraz bardziej popularne, 
a w niektórych sytuacjach niezbędne. Podczas wykonywania pomiarów w miejscach 
niebezpiecznych muszą być one stosowane. Jednocześnie wygoda wykonywania 
pomiarów z biura lub jakiegokolwiek miejsca na świecie staje się coraz bardziej 
atrakcyjna. Większość nowoczesnych instrumentów pomiarowych daje moŜliwość 
zdalnej kontroli. Poza standardami słuŜącymi do programowania i obsługi 
instrumentów pomiarowych z poziomu aplikacji pomiarowych (LabView), coraz 
częściej zdalna kontrola obejmuje GUI (Graphic User Interface). W tym przypadku 
wirtualny interfejs imituje wbudowany panel frontowy urządzenia (np. e*Scope firmy 
Tektronix [7] ). Przyrządy pomiarowe podlegają ciągłej miniaturyzacji. Jednym 
z elementów ograniczających zmniejszenie rozmiarów jest konieczność 
umieszczenia w urządzeniu pomiarowym panelu sterującego z ekranem. Coraz 
częściej zdarza się takŜe, Ŝe przyrządy pomiarowe wykorzystywane są wyłącznie 
w trybie zdalnym. Wówczas wbudowany interfejs lokalny przyrządu pomiarowego 
staje się niepotrzebny lub wręcz niepoŜądany, gdyŜ, po pierwsze utrudnia dalszą 
miniaturyzację urządzenia i po drugie stanowi niepotrzebny wydatek.  
 Zdalna kontrola urządzeń pomiarowych w postaci GUI odzwierciedlającego 
panel frontowy urządzenia juŜ nie tylko stanowi dodatkową funkcjonalność, ale moŜe 
skutecznie konkurować z lokalnym interfejsem wbudowanym, a nawet przewyŜszać 
go moŜliwościami. Pozwala ona na obsługę wielu urządzeń z jednego stanowiska 
(PC/laptop) czy łatwe pozyskiwanie danych pomiarowych do dalszej analizy. 
Co więcej, zawsze istnieje moŜliwość wykorzystania interfejsu zdalnego lokalnie 
ustawiając PC/laptop obok urządzenia pomiarowego. Dlatego nowym i rozwojowym 
kierunkiem w dziedzinie takich urządzeń wydają się być przyrządy pozbawione 
wbudowanego interfejsu uŜytkownika. Urządzenia te mogą być atrakcyjne zarówno 
dla uŜytkowników jak i producentów, gdyŜ zmniejszają koszt produkcji 
(brak wyświetlacza, itp.) oraz pozwalają na większą uniwersalizacje przyrządów. 
Funkcjonalność urządzenia jest w duŜej mierze zaleŜna od interfejsu, a jeśli ten jest 
wirtualny, jego wymiana wymaga jedynie nowego oprogramowania. Urządzenia 
sterowane wyłącznie za pomocą zdalnego GUI pojawiły się juŜ na rynku 
(np. BitScope [11] ).  

Uniwersalny System Pomiarowy z Interfejsem Webowym jest urządzeniem 
stworzonym na potrzeby Fizyki Wielkich Energii, m.in. diagnostyki akceleratorowej. 
Baza sprzętowa instrumentu (dostępna komercyjnie) jest miniaturowym, modularnym 
urządzeniem wbudowanym, które zostało zaprojektowane zgodnie z najnowszymi 
trendami. Urządzenie to łączy mikroprocesor o duŜych moŜliwościach obliczeniowych 
z układem logicznym FPGA (Field Programmable Gate Array). Mikroprocesor 
(ARM9 [45] ) pozwala na uruchomienie systemu operacyjnego, zaś FPGA 
(ALTERA Cyklon I [21] ) umoŜliwia szybkie, równoległe przetwarzanie danych. Aby w 
pełni wykorzystać moŜliwości sprzętowe tego urządzenia i stworzyć produkt 
wpisujący się w nowoczesne trendy rozwoju systemów pomiarowych, konieczne było 
wykonanie odpowiedniego systemu sterującego (oprogramowanie i układ logiczny) 
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poprzedzone przeglądem istniejących rozwiązań i moŜliwych do wykorzystania 
technologii.  

Bardzo waŜną konkluzją z przeglądu istniejących rozwiązań jest fakt, 
iŜ oferowane przez producentów instrumentów pomiarowych wirtualne zdalne panele 
graficzne (GUI) wymagają instalacji oprogramowania po stronie klienta 
lub przygotowania dedykowanego serwera z odpowiednim oprogramowaniem 
podłączonego do urządzenia pomiarowego. 

Celem tej pracy było wykorzystanie dostępnej komercyjnie bazy sprzętowej 
do stworzenia autonomicznego i uniwersalnego systemu pomiarowego ze zdalnym 
sterowaniem opartym na interfejsie WWW. Niniejsza praca stanowi opracowanie 
teoretyczne i realizacje systemu sterującego USPIW. System ten obejmuje logikę 
do FPGA, Embedded Linux zoptymalizowany i skonfigurowany na potrzeby USPIW, 
a takŜe szereg aplikacji i rozwiązań umoŜliwiających kontrolę urządzenia  
i wykonywanie pomiarów z poziomu strony WWW oraz wybranego interfejsu 
pomiarowego (Standard Commands for Programmable Instrumentation). W ramach 
pracy i zgodnie z wymaganiami początkowymi, zaimplementowano 
GUI i funkcjonalność umoŜliwiające na wykorzystanie urządzenia jako prostego 
oscyloskopu cyfrowego i analizatora widma.  

Podstawą budowy systemu sterującego USPIW jest system operacyjny Linux, 
co pozwala na uniezaleŜnienie architektury USPIW od platformy sprzętowej oraz 
wykorzystanie istniejących rozwiązań czy aplikacji. System sterujący USPIW moŜe 
zostać uruchomiony na dowolnym mikroprocesorze, na którym moŜliwe 
jest uruchomienie Linux’a. Linux dla USPIW stworzony został w oparciu o jądro 
2.6.19 odpowiednio zmodyfikowane i skonfigurowane. System plików 
zaimplementowany został jako initramfs – wkompilowany w obraz z jądrem, 
ładowany do pamięci RAM przy starcie systemu.  

Układ logiczny opisany w języku VHDL (Very High Speed Integrated Circuit 
hardware description language) i zaimplementowany w FPGA ma dwa zadania: 
obsługa komunikacji z mikroprocesorem i zarządzanie akwizycją danych. Akwizycja 
danych kontrolowana jest przez mikroprocesor przy pomocy szeregu parametrów 
zapisywanych w rejestrach kontrolnych FPGA (wykorzystując logikę obsługującą 
komunikację). Logika zarządzająca akwizycją na bieŜąco kontroluje stan rejestrów 
i reaguje w odpowiedni sposób na zmianę ich zawartości. Komunikacja 
w przeciwnym kierunku (logika akwizycji->mikroprocesor) działa analogicznie. 
Rejestry kontrolne umieszczone są w obszarze adresowym mikroprocesora. Podczas 
akwizycji danych wartości napięcia odczytane z przetworników analogowo-cyfrowych 
zapisywane są w pamięci SSRAM (Synchronous Static Random Access Memory). 
Po zakończeniu akwizycji następuje odczyt danych z SSRAM do mikroprocesora, 
przesłanie do klienta i przetworzenie do formy graficznej. 

Komunikacja z FPGA po stronie mikroprocesora i systemu operacyjnego 
zapewniona jest przez stworzony do tego celu sterownik do Linux’a (Linux Device 
Driver). Sterownik ten pozwala na komunikację z logiką zaimplementowaną w FPGA 
na róŜnych poziomach abstrakcji (ogólny, wyspecjalizowany) i róŜnymi metodami 
(przez ioctl lub system plików /proc). 

Urządzenie obsługiwane jest z poziomu strony WWW. Głównymi jej składnikami 
są: Interfejs Oscyloskopu i Analizatora Widma oraz Interfejs Zarządzania 
Urządzeniem. Strona WWW Uniwersalnego Systemu Pomiarowego z Interfejsem 
Webowym dostarcza dodatkowo krótką informację o projekcie, instrukcje obsługi, 
oraz przykłady zastosowań (skrypty Matlab). Bardzo waŜną kwestią podczas pracy 
nad projektem był wybór odpowiednich technologii do stworzenia Interfejsu 
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Oscyloskopu i Analizatora Widma. Spośród wielu moŜliwości rozwiązania tego 
zadania i technologii moŜliwych do zastosowania w jego realizacji, wybrano 
implementacje GUI jako Apletu Java’owego. Komunikacja apletu ze sterownikiem 
Linux’owym, a w konsekwencji z logiką FPGA, odbywa się z wykorzystaniem 
Common Gate Interface (CGI). Zastosowanie Apletu Java’owego, który wykonywany 
jest w przeglądarce na komputerze klienta oraz CGI pozwoliło na przeniesienie 
wymagań na moc obliczeniową z ograniczonego w zasobach mikroprocesora USPIW 
na komputer klienta. Takie zadania jak generacja grafiki, interakcja z uŜytkownikiem, 
przechowywanie danych pomiarowych odbywają się po stronie klienta, nie obciąŜają 
USPIW i redukują ilość przesyłanych informacji między serwerem (znajdującym się 
w USPIW) i klientem. Architektura Apletu Java’owego oparta jest o wzór 
Model-View-Controller (MVC) [61] , który umoŜliwia dokonywanie zmian w kaŜdym 
z trzech komponentów architektury (modelu danych, interfejsie uŜytkownika, logice 
sterowania) niezaleŜnie. Sprawia to, iŜ aplet moŜe zostać łatwo rozszerzony o nowe 
funkcje lub wykorzystany do implementacji całkiem nowych zadań.  

Interfejs Zarządzania Urządzeniem wykorzystuje CGI do wywoływania funkcji 
systemowych lub uruchamiania aplikacji oraz Java Script do weryfikacji danych 
wejściowych.  

Zastosowane technologie oraz fakt, iŜ urządzenie pomiarowe jest jednocześnie 
serwerem, pozwoliły uwolnić uŜytkownika od konieczności instalowania 
dedykowanego oprogramowania lub stosowania specjalnego serwera podłączonego 
do urządzenia. UŜytkownikowi nie potrzebne są specjalne uprawnienia, 
aby obsługiwać USPIW. Pod tym względem stworzony system wyprzedza oferowane 
komercyjnie rozwiązania i moŜe być nazwany innowacyjnym 

Aby USPIW mógł zostać zintegrowany w większym systemie pomiarowym 
lub być obsługiwany przez aplikacje pomiarowe (np. w celu zaprogramowania 
przebiegu pomiaru), zaimplementowano Interfejs do Zdalnych Pomiarów. Istnieje 
wiele standardów pozwalających na realizację tego zadania. Bardzo powszechnym 
i często stosowanym jest Standard Commands For Programmable Instruments 
(SCPI) [57] . Standard ten określa składnię i strukturę poleceń do kontroli 
programowalnych instrumentów pomiarowych. W USPIW zaimplementowany został 
jako serwer socket’owy. Składa się on z interfejsu uŜytkownika, analizatora składni, 
dekodera poleceń, interfejsu ze sterownikiem oraz systemu zapisywania informacji 
o pracy serwera (logowanie). WdroŜony serwer realizuje prosty słownik poleceń 
dla oscyloskopu. Budowa Serwera SCPI pozwala na jego łatwe rozszerzenie o nowe 
funkcje. Interfejs przetestowany został przy pomocy aplikacji Matlab. Odpowiednie 
skrypty uŜyte w tym celu i pozwalające na połączenie się z USPIW 
oraz przeprowadzenie pomiarów dostępne są na stronie USPIW. 

Dzięki innowacyjnej budowie i architekturze systemu, do jego obsługi 
niepotrzebny jest dedykowany serwer (np. w postaci komputera PC), ani specjalne 
oprogramowanie klienckie. Urządzenie moŜe zostać podłączone bezpośrednio 
do intranetu, Internetu lub komputera osobistego. Zwykła przeglądarka internetowa 
umoŜliwia bezpośredni dostęp do wbudowanego interfejsu WWW, który pozwala 
na zarządzenia urządzeniem i przeprowadzanie pomiarów. Stworzony system 
sterujący USPIW daje moŜliwość łatwego rozszerzenie funkcjonalności urządzenia 
(np. o funkcjonalność częstościomierza). Architektura GUI (Aplet Java’owy) pozwala 
na łatwe dodawanie nowych paneli kontrolnych przy wykorzystaniu uniwersalnych 
metod komunikacji ze sprzętem. Modularna budowa bazy sprzętowej umoŜliwia 
zmianę mierzonych wartości. MoŜna zamontować, np. stację meteorologiczną, 
zamiast modułu z przetwornikami analogowo-cyfrowymi, a następnie wykorzystać 
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istniejące rozwiązania do stworzenia odpowiedniego interfejsu. Co więcej, 
architektura i rozwiązania zastosowane w USPIW są niezaleŜne od platformy 
sprzętowej. Dzięki temu mogą stanowić podstawę do stworzenia interfejsu 
sterującego dla dowolnego urządzenia (jeśli mikroprocesor pozwala na uruchomienie 
Linux’a), które ma być zarządzane zdalnie za pomocą połączenia Ethernet.  

System spełnił wszystkie wymagania początkowe, a nawet przewyŜszył je pod 
względem uniwersalności. Pomyślnie przeszedł on testy w warunkach 
laboratoryjnych, a następnie został wykorzystany do pomiarów w Europejskiej 
Organizacji Badań Jądrowych (CERN). Pomiary przeprowadzone zostały 
w akceleratorze PS (Proton Synchrotron). Obejmowały analizę kształtu i widma 
sygnału elektrycznego z czujników pomiarowych detektujących przyspieszane 
protony. 
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1. Introduction 
 

The significance of remote control is increasing in the entire spectrum of applications, 
measurement is not an exception. Remotely controlled measurement instruments are both 
popular and needed. When acquisition is made in a dangerous place, remote control 
is necessary. However, the convenience of performing measurement from the office or any 
location in the world is becoming increasingly important and appealing nowadays. That 
is why most of the vendors of measurement equipment offer their instruments with remote 
control. It is a standard for good and expensive measurement devices, i.e. oscilloscopes, 
to offer control via USB, Ethernet, GPIB, etc. Such devices can be remotely controlled using 
measurement applications, special software provided by the vendors or web interface. 
Remote control interfaces provide functionality at least equal to the functionality of local 
interfaces.  

In the measurement devices (in principle, any device) which are used only-remotely, 
local interface (i.e. buttons, screen, knobs) can introduce unnecessary overheads in size and 
costs. On the other hand, measurement devices which are used “on the spot”, can be 
controlled through remote interface as well. What is more, using remote interface locally can 
be preferred since it provides more functionality and enables to control many measurement 
device using single PC/laptop.  

It my lead to a conclusion that nowadays, remote interface can become a substitute 
or competition for local interface. It seems that remote control has many advantages over 
traditional control. It allows management of many instruments from one station (PC, laptop), 
i.e. using single application (LabView, Matlab). It also enables to easily export data for further 
analysis. The costs of production and development can be significantly reduced 
by eliminating local interface. It can also remove minimal size constraints resulting 
in significant size reduction, since there is no need to place screen, buttons, etc on the 
device. Importantly, such devices (without local interface) do not lack any of the functionality 
of standard instruments. In contrary, they are much more functional than devices with only 
local interface. 

Elimination of local interface can be also advantageous for equipment vendors. User 
interface of only-remotely controlled devices can be easily changed by upgrading 
the firmware. This is a great asset. One of the factors which determines application of 
a device is it’s user interface. The possibility to easily change interface enables device to be 
universal within hardware limitations. 
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1.1 Remote control of measurement instruments 
 

 There are many ways a measurement device can be controlled remotely. In principle, 
the solutions are divided according to the medium of communication and the software 
interface. A detailed description is provided in Appendix A: 2.2 . Among 7 most commonly 
implemented mediums of communication in measurement devices (GPIB, R-232, VXI,LXI, 
PXI, USB and Ethernet), USB and Ethernet connections are becoming increasingly 
important. The software interfaces are divided into two categories.  
First category  (i.e. VISA, SICL, VXI-11) enables to program measurement devices 
and control then from measurement applications (i.e. LabView, Matlab). It is available via 
most of the mediums of communication and is implemented in most of the measurement 
devices.  
Second category  provides control with Graphic User Interface (GUI) which is meant 
to resemble local interface. It is a new trend among measurement instruments vendors 
to provide such interface. Only USB or/and Ethernet links are used in this category. The GUIs 
are either implemented as stand-alone applications which connect with the device over 
USB/Ethernet or Web User Interfaces which use browsers and Ethernet connection to control 
measurement instruments. 
 Web-based remote control via Ethernet seems especially attractive because it does not 
require installation of any special software. Ethernet card and web browser are enough 
to operate the device. This requirement is met by the majority of standard PCs, laptops and 
some models of mobile phones. It also enables the measurement instrument, without 
additional efforts (i.e. special server), to be connected to the Internet and controlled from any 
place in the World (unlike USB based control). 

1.2 Web User Interface to control hardware 
 
 Web-based remote control of measurement instruments via Ethernet is an example 
of Web User Interface which enables to control hardware. This form of hardware control 
is increasingly popular not only among measurement devices. 
 User Interface (UI), in computing, is defined as a set of means which allow interaction 
(mutual exchange of information) between the user and the system (i.e. application). 
If the mean of interaction is a web page which is transmitted via the Internet (Ethernet 
connection) from the system (web server) to the user (web client) who views it using web 
browser, the UI is referred to as Web User Interface (WUI).  
 The rapid increase of Internet’s popularity resulted in widespread usage of Web User 
Interfaces in new range of applications. The greatest advantage of Web User Interface is 
the fact that its only hardware (Ethernet card) and software (web browser) requirements are 
met by overwhelming majority of modern PCs and laptops. One of the applications of WUI 
is online control of hardware. Web User Interface to control hardware is a web page which 
directly reflects state of the hardware and enables the user (client) to alter this state. One 
of the examples of WUI which controls hardware is the administrator’s control web page 
of routers such as LinkSys [1]  or Livebox [2] . Nowadays, web-based control of hardware 
finds increasing number of applications in the fallowing fields: 

• Intelligent buildings - WUI enables to access intelligent building’s control panel 
and manage it from any location in the World (i.e. office), 



 Universal Measurement System with Web Interface 
 

Maciej Lipiński  13 

• Measurement device control – WUI, which resembles the instrument, enables 
to perform measurement remotely, or view measurement results by many research 
teams spread around the World 

• Internet remote laboratories – WUI enables to perform experiments 
and measurements remotely using laboratory sets, 

 Web User Interfaces can range from very simple HTML pages which are controlled 
by clicking appropriate hyperlinks or inputting values into forms, to sophisticated web 
applications which provide Graphics Interface (i.e. resembles actual device being controlled). 
A detailed description of various technologies which enable web client to interact with 
hardware is enclosed in Appendix A: 2.3 . What distinguishes such a technology 
is the possibility to make system calls, start/stop applications or read/write files on server 
side (which are the means to control hardware) as a consequence of web client’s request. 
Since web server is the recipient of web client’s requests, it needs to be able to perform such 
actions. Most servers, if not all, embed Common Gate Interface (CGI)[3] . It is an old 
mechanism which enables the server to execute scripts (shell, Perl, Python, etc) or even 
applications. Such scripts or applications can, in turn, access and control hardware. A newer 
technology which enables hardware control, by providing file access and special functions 
to run shell commands, is PHP [4] . PHP is a server-side scripting language which produces 
dynamic web pages. It requires a PHP parser installed along with the web server. There 
is a number of other technologies which enable to access hardware. The more sophisticated 
technology (Java Servlets, ASP.NET) the more requirements needs to be satisfied by 
the server.  Very often the web server is embedded in the device which is being controlled. 
It means that the server is run on an embedded system with limited resources which does 
not allow to use sophisticated technologies. An example of such device is a measurement 
instruments which provides web-based control.  

1.3 Examples of commercially available solutions 
 
 Among few commercially available solutions which enable web-based control 
of measurement instruments, most is based on web servers embedded into the devices. 
A background research of commercially available Web User Interfaces for measurement 
instruments revealed that the number of such solutions is not great.  

1.3.1 Tektronix 
 Two implementations of remote control over Ethernet are offered by the Tektronix 
measurement instruments. First solution uses special application, available for Windows 
operating system, which needs to be installed on a PC. It is described in [5] application note 
for TG700 Tektronix device. The Tektronix’s application connects to measurement 
instrument in order to send commands and retrieve data. 
 e*Scope is the second remote control GUI provided by Tektronix. It is a web-based 
interface which provides access to all front panel oscilloscope’s controls and presents 
a faithful reproduction of the oscilloscope screen. Tektronix website [6]  states that: 
 

“With the new e*Scope web based remote control feature, 
a common network browser, and Internet connection, 
the engineer in Beijing can see exactly what the designer 
in Berlin is seeing on the TDS3000B screen-at the same time.” 
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 e*Scope, described in [7],  operates in two modes: basic and advanced. The basic 
mode is available directly after connecting a PC with LAN cable to Tektronix instrument. 
The e*Scope home page, which is housed in the device, enables the user to control 
oscilloscope by typing in commands. To run the advance mode, a special website provided 
by Tektronix [8]  needs to be accessed or a “e*Scope Software” needs to be downloaded 
(to avoid connecting to Tektronix web page). The advanced mode enables user to control 
oscilloscope through graphic user interface (Figure  2).  
 

 
 

 

Figure 1 e*Scope basic mode Figure 2 e*Scope advanced mode 
 
 An investigation of “e*Scope Software”, which is available for download from Tektronix 
web page, enabled to learn the technology and design of e*Scope solution. It uses 
JavaScript to send commands to the instrument and retrieve screen views. A screen view is 
generated in the Tektronix device and send to the browser as an image in .png format. 
“e*Scope Software” turned out to be a simple JavaScript.  

1.3.2 Agilent  
 BenchLink Web Remote Control [9]  is a software that provides remote control for 
Agilent’s spectrum analyzers. The software is installed on a local server computer which is 
connected to the instrument via GPIB or LAN interface (Figure  3). Multiple users can access 
the analyzer simultaneously from the intranet or Internet. The server requirements include: 
Windows XP, 100MB free disk space, PCI expansion for PCI-GPIB card or PCMCIA in case 
of using laptop or configuration to run a LAN-GPIB gateway. Only Web browser is required 
from the client to operate the analyzer. The software can be tested on Agilent web site [10]  
which provides a limited-features simulation of spectrum analyzer Figure 4 ). 
 

  
Figure 3 Remote control of Agilent Analyzer Figure 4 BenchLink applet 
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1.3.3 BitScope 
 BitScope is the only commercially available product found by the author*, which offers 
only remote interface. BitScopes can be controlled via Ethernet or/and USB (depending on 
the model). BitScopes are Mixed Signal Oscilloscopes, which means that they capture and 
display one, two or four analog signals and eight logic or timing signals, simultaneously. 
Regardless of the connection type, BitScope products are controlled by BitScope DSO 
Virtual Instrument Application which needs to be installed on a PC. It integrates Digital 
Storage Oscilloscope, Mixed Signal Oscilloscope, Spectrum Analyzer, Logic Analyzer, Data 
recorder and Networking. The software is available for Windows and Linux workstations. 
BitScope Model 100 is presented in  
Figure 5. This model is USB-controlled. It is the only BitScope model which is “user 
programmable and software extendable”[11]  which is possible though BitLib Application 
Programming Library. The library can be used with “several different programming languages 
and numeric analysis environments”[11] . It can be used to operate BitScope from MatLab 
or LabView as well as for writing applications with Visual Studio or Borland Delphi.   
Figure 6  provides an insight into BitScope Model 100 architecture and the manual 
of BitScope Model 50 [12]  provides details of BitScope’s hardware. It is controlled by PIC 
microcontroller (PIC16F877) and uses Complex Programmable Logic Device (M4A5-
TQFP44). 8bit Analog-to-Digital Converters are used enabling 100MHz bandwidth 
and 2mV~40mV analogue sensitivity. 
 

  

 
Figure 5 BitScope instrument and GUI 

 
Figure 6 BitScope Model 100 architecture 

1.4 Hardware solutions for measurement systems 
 
 The multitude of features, remote measurement interfaces, sophisticated local 
interfaces (i.e. touch-screens) or the ability to be controlled only remotely result in excessive 
hardware requirements towards modern measurement systems. In particular, nowadays 
most (if not all) measurement instruments include microprocessors which control virtually 
every circuit in the measurement devices. Since modern microprocessors can be very 
powerful (i.e. PowerPC [13] , ARM [14] ) and the requirements on instrument’s features are 
increasingly demanding, more and more measurement instruments employ embedded 
operating systems (in case of less sophisticated and cheaper devices) or even normal 
operating systems (very sophisticated and expensive, i.e. Agilent Infiniium Oscilloscopes [15]  
work on Windows XP Pro). Such solution allows for great flexibility.  

                                                
* The author cannot guarantee that there is no other similar product on the market 
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 On the other hand, the example of BitScope (1.3.3) shows a tendency of using 
programmable logics in measurement devices. Complex Programmable Logic Devices 
(CPLDs) as well as Field Programmable Gate Arrays (FPGAs) are used for signal processing 
(i.e. FFT) and other operations where massive parallelism is needed. Such tasks are 
performed much faster in FPGAs or CPLDs than in microprocessors. It reflects a general 
recent trend in electronic device development to combine the logic blocks 
and interconnections of traditional FPGAs with embedded microprocessors and related 
peripherals. FPGA is especially popular in custom-made or low-volume systems, since it is 
re-programmable providing easy bugs fixing and short time to market. Among providers 
of CPLDs and FPGAs are Altera [16] , Xilinx [17] , ATMEL [18] or Lattice Semiconductors 
[19] . 

1.5 Universal Measurement System with Web Interface  (UMSWI) 
 
 Responding to a demand from European Organization for Nuclear Research (CERN), 
Creotech Ltd. [20] high-tech company produced a prototype of modular embedded 
measurement device. In the configuration provided, it is an ARM based microcomputer with 
data acquisition daughterboard. It consists of 3 modules: main board, ARM computer and 
recorder. The most important parameters and features of the hardware are presented 
in Table 1.  
 

Module 
name 

Module 
application 

Module’s components 
Size 
[mm] 

Photo 

Main 
board 

Hosts power 
supply, 
peripherals 
and other 
modules 

Switched-mode Power 
Supply 
Graphic controller  
Sound controller 
I2C interface 
Peripherals: USB, 
RS232, Ethernet, output 
for built-in LCD-TFT and 
for VGA monitor 

100x80 

 

ARMputer Single 
Board 
Computer 

Processor: ARM9 
(AT91RM9200) [45]  
128MB SDRAM 
Ethernet interface 10/100 
Mbit 
FLASH 8MB 
SD/MMC reader,  
Interfaces: 2 x Serial 
ports, 2x USB hub and 
device 

60x70 

 

Recorder Acquisition ALTERA Cyclone I FPGA 
[21]  
2 x fast, 105MS/s. 10 bit 
ADCs [22]  
SSRAM – 128K x 32 b 
[23]  

100x80 

 
Table 1 Hardware components of UMSWI 
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 The device is meant to be a measurement instrument for High Energy Physics  
i.e. used in accelerators for diagnostics. However, the number of possible application is far 
greater, alternatively UMSWI can be used for data acquisition in any dangerous or hard-to-
reach place, as a remote monitoring system of industrial parameters, reconfigurable 
measurement system or an element of distributed measurement system . 
 In such places as accelerators, measurements are done remotely due to the possible 
radiation danger. Once settled in the measurement location, the instrument is operated from 
a safe place. Therefore, development of a control system which enables remote 
management of the device and remote data acquisition was necessary. The device is 
equipped with Ethernet peripheral to enable remote control via Ethernet connection. Since 
Web User Interface (1.1) seems to be the new trend in measurement instruments’ remote 
control, which demands the least requirements on the client and is a very flexible solution, 
it was decided that such interface should be developed. Remote control using Web User 
Interface is especially suitable for operation at CERN, since it does not require dedicated 
client software. Due to the fact that four different operating system platforms are used at 
CERN (Linux, Windows, Mac and UNIX), it would be very time-consuming and expensive to 
create client’s software for each of them. Web User Interface is client’s platfrom-independant. 
 In order to enable UMSWI to be a part of a larger system (i.e. Tango [24]  
or EPICS [25]  ) or to take part in experiments where measurement instruments are 
controlled with applications such as LabView or MatLab, more “traditional” control is needed, 
therefore Remote Measurement Interface (1.1, first category)  was required to be 
implemented. 
 The author was given an opportunity to choose and adapt embedded operating 
system, develop a prototype control software, FPGA logic and interfaces for the provided 
hardware. 

1.5.1 UMSWI hardware architecture and dataflow 
 Design and development of control system for hardware requires thorough 
understanding of architecture, data flow and limitations of the provided hardware. Figure 7  
presents general overview of UMSWI’s architecture and dataflow.  
   

 
Figure 7 UMSWI architecture and dataflow  
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 The acquired signal is converted by 10 bits Analog-to-digital Converters (ADCs) and 
saved into Synchronous Static Random Access Memory (SSRAM). The acquisition 
is controlled by the Field Programmable Gate Array (FPGA). Alternatively, instead of saving 
data in SSRAM, it can be directly read by FPGA, computed and later saved in SSRAM. It is 
also possible to save data in SSRAM and read in FPGA simultaneously. Once the acquisition 
has finished, data can be read by the processor. Readout process is managed by FPGA and 
controlled by microprocessor. Data processing can be performed in FPGA logic as well as in 
application running on microprocessor. From the processor data is transported to the user by 
the Ethernet or can be displayed locally on LCD/VGA  monitor.  
 Hardware Architecture of acquisition module is described in details in Appendix A: 2.1 . 
It was particularly important to familiarize with acquisition module, since its layout has 
the greatest influence on architecture and design of UMSWI control system. 

1.5.2 Embedded Operating System 
 The UMSWI was intentionally provided with a powerful ARM9 microprocessor 
to enable usage of embedded operation system. In fact, the microprocessor (AT91RM92000) 
is very popular among embedded systems. It is, of course, possible to develop applications 
directly for this processor. However, much better and more popular solution is running 
embedded operating system. It makes the system flexible and allows re-use or adaptation 
of already existing solutions. A review of embedded operating systems and general 
description of Embedded Linux architecture (Linux was chosen to be the operating system 
on UMSWI) is provided in Appendix A: 2.1 and 3.1 

1.6  The Thesis Project Genesis and Objective 
 
 Following a demand by High Energy Physics for a small remotely controlled diagnostic 
measurement device to be used in accelerator tunnels, UMSWI hardware was created.  
The hardware was designed following modern trends in measurement instrument 
development and having in mind broader applications (than accelerator diagnostics). Such 
universal and trendy hardware needed equally featured control system† which could not be 
provided by Creotech Ltd. The UMSWI control system’s development required to 
be preceded by research to establish current trends, tendencies and technological 
possibilities in the field - a task in line with interests, knowledge and experience of the author 
who decided to take this challenge, thus this Master Thesis project was started. 
 The goal of this Master Thesis is the utilization of commercially available hardware 
(Creotech Ltd.) to create an autonomous, universal measurement system with remote 
Web-based control. 

1.7  Requirements 
 
 An employee of European Organization for Nuclear Research (CERN), who has 
experience in the area of exploitation and usage of commercial measurement instruments, 
presented demand for a measurement device with the following interfaces: 

• Web User Interface (WUI) –providing web-based Graphic User Interface to enable 
the user to remotely control UMSWI, perform data acquisition and display acquired 
data in graphical form. 

                                                
† A collective of systems, applications, interfaces, etc. that were designed and developed by the author 
is called in this thesis control system of UMSWI . 
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• Remote Measurement Interface (RMI) – implementation of one of the standard 
measurement protocols to allow remote control from measurement applications level 
(i.e. Matlab, LabView)  

The device was required to enable functionality of simple digital oscilloscope and spectrum 
analyzer with further possibility of other measurement system implementations.  
 Instalation of a reasonably powerful microprocessor in the provided device was 
intended for usage of embedded operating system, therefore an operating system should be 
chosen and developed.  
 The main limitations to this project were imposed by the provided hardware. 
The following measurement system features were determined: 

• Signal source – two digital ADCs determines number and type of signal source 
• Sampling speed – determined by the speed of ADCs:100MHz 
• Sample maximal length – determined by the SSRAM memory size (128k of samples) 
• Communication: Ethernet, USB, RS-232 
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2. Architecture  
 
 The architecture of UMSWI’s control system was created dividing the system into 
the following components 

• Operating system 
• FPGA logic 
• Web User Interface (WUI) 
• Remote Measurement Interface (RMI) 
• Connotation between Remote Interfaces and FPGA logic 

 The division was determined by hardware architecture (1.5.1), requirements (1.7) 
and technologies (Appendix A: 2 ) needed to develop each part of the system. General 
architecture of entire system was created before design and implementation of component 
(Figure 8) .  

 
 

Figure 8 General UMSWI architecture 
 
 According to the requirements, the UMSWI control system is based on an embedded 
operating system. Such solution enables high level of flexibility which was decided to be 
utilitized to the benefit of the system’s flexibility, robustness, simplicity of further extensions 
and modifications. The architecture and design of the entire system and each component 
were prepared having in mind reusability, extendibility and universality. 
 Each of the required interfaces (WUI & RMI) is placed in the embedded operating 
system environment. Both interfaces need to communicate with FPGA logic, therefore 
a common hardware-software communication layer can be provided. The layer is designed 
according to operating system rules and adjusted to underlying hardware specification. 
It provides communication with FGPA logic on various levels of abstraction to enable 
creation of additional interfaces and control of different FPGA logic or even different 
hardware 
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 Remote Measurement Interface (RMI) needs to implement standard interface which 
can be connected to (on the physical level) and understood (on the abstract level) by 
third-party measurement applications running on the remote PC. Therefore the client 
application does not influence the system’s architecture, unlike in the Remote User Interface 
(RUI). In RUI, depending on the technology choice, the application running on the remote PC 
can be either an integral part of the UMSWI control system, or can have substantial influence 
on the system’s architecture. 
 The FPGA logic provides logic to control acquisition process and communication 
interface to exchange data between ARM and FPGA. The communication interface is 
universal to enable control of custom-made acquisition control logic (i.e. extended 
to implement computation algorithms like FFT).   

2.1 Embedded Operating System – Linux 
 
 The choice of embedded operating system was preceded 
by background research on available solutions suited for 
AT91RM9200 architecture. The review is summarized  
in Appendix A: 2.1 .  
 All the proprietary solutions were discarded since they 
increase the costs of UMSWI and bring licensing issues 
in further extensions or modification of the system. Furthermore, 
the number of users of proprietary embedded operation systems 
is smaller and the exchange of information between them not as 
public as in the case of open source embedded operating 
systems. Therefore, the choice of non-proprietary embedded 
Linux, the most popular among embedded open source 
operating system with the strongest developer’s support . There 
is a vast number of books, articles and forums describing it’s usage and development 
on ARM mikroprocessors: [26, 27, 28, 29]. The author of [27] in the chapter “Reasons for 
Choosing Linux” as well as the author of [28] in the chapter “Why Embedded Linux” devote 
few pages pointing out advantages of using Linux. Among others are: “availability of code”, 
“hardware support”, “available tools”, “Community support” and many others. Running Linux 
enables using a great number of open source programs and support of a strong and 
numerous community of Linux and embedded Linux developers. It was decided not to use 
any of the open source Embedded Linux distributions to ensure systems wide portability. 
If the system was developed for particular embedded Linux distribution, using the UMSWI’s 
control system on the architecture not supported by the chosen distribution might pose 
a problem. Therefore, “vanilla” kernel was used making UMSWI control system potentially 
usable on any distribution. “Vanilla” kernel is the Linux kernel version maintained by Linux 
Torvalds (the creator of Linux) himself. It servers as a reference point for all the distributions 
and ports of Linux. Many Linux operating system vendors modify the kernels of their product, 
i.e. to add support for drivers and features not officially released as stable. All the embedded 
Linux distributions are include versions of “vanilla” kernel.  

2.1.1 Embedded Linux System for UMSWI 
 The architecture of Embedded Linux System for Universal Measurement System with 
Web Interface follows general rules of embedded Linux system architecture which are 
described in details in Appendix A: 3.1 . The architecture is determined by three factors :  

• Hardware restrictions (storage size, RAM, peripherals), 

Figure 9 UMSWI 
architecture - Linux 



 Universal Measurement System with Web Interface 
 

Maciej Lipiński  22 

• System requirements and applications, 
• Potential portability to other architectures. 

 One of the main hardware restrictions in Embedded Linux Systems is storage size. 
Frequently, the biggest challenge for embedded developers is to fit the system into limited  
memory space. 8 MB of flash memory provided by UMSWI is more than sufficient to hold 
embedded Linux image with compiled kernel and root file system providing basic utilities. 
It turned out that the flash memory is also sufficient to hold all the utilities of UMSWI. 
However, it was decided to store UMSWI utilities on the MMC/SD memory card. Actually, 
UMSWI utilities are stored in both locations (root file system on flash memory and MMC/SD). 
It allows the system to be much more flexible. If the system is to be ported to an architecture 
with limited flash memory, MMC/SD can be used. If MMC/SD slot is not provided, UMSWI 
utilities are read from flash. On the startup, the system tries to find UMSWI utilities 
on MMC/SD card in the first place. If it fails, utilities stored in flash are used. It makes 
the system robust and enables easy upgrades. The user upgrades or modifies UMSWI 
utilities stored on MMC/SD. If the upgrade fails, or the user’s modifications are erroneous, 
the system is still useful provided the MMC/SD card is not inserted.  
 The Low-level interface is appropriately ported to mach the AT91RM9200 architecture 
and ARMputer peripherals.  

2.2 FPGA logic 
 
 FPGA logic architecture is composed of two 
parts: Communication Logic (CL) and Acquisition Management 
Logic (AML). Communication Logic is used to exchange information 
between Acquisition Management Logic and Remote Interfaces 
(in principle: operating system user space): 

• acquisition parameters  
• state of acquisition  
• measurement data 

Acquisition Management Logic is meant to manage data acquisition, 
in particular: 

• collecting data from ADCs 
• storing data in SSRAM (during data acquisition) 
• reading data from SSRAM (during data readout) 
• data processing  
• trigger management and detection 

 Such architecture makes it easier to further extend the system (i.e. with different data 
processing algorithm) or adapt it to different hardware. Thanks to the separation, in case 
of system extension or adaptation, the main modifications are performed in the Acquisition 
Management Logic, while the communications remains unchanged or requires very small 
modifications. 
 The Acquisition Management Logic is controlled, through Communication Logic, 
by the user. The control includes starting/stopping the acquisition and determining 
the acquisition characteristics (parameters). The parameters were determined studying 
operation and control of an oscilloscope: 

• Sampling time (ts) – the minimum sampling time (tsmin) is determined by ADCs’ 
sampling frequency (100MHz), sampling time can be a multiple of tsmin only, 

• Record length (l) – number of samples stored in SSRAM after trigger. Maximum value 
of record length (lmax) is limited by SSRAM size (128K 32bit-words), 

Figure 10 UMSWI 
architecture - 
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• Delay time (td) –  the interval between trigger detection and start of record length 
counter, 

• Trigger source (SRC)– there are three types: external signal, signal from ARM9 
(user), signal level. 

• Trigger level, 
• Trigger edge, 

 It was decided to store each of the parameters in FPGA as a register mapped into 
separate address of ARM9 microprocessor memory space. Therefore, the task 
of Communication Logic is to: 

• recognize the operation (read/write), 
• decode the address presented on the address bus , 
• read data from ARM data bus and write it into appropriate register in case of ARM 

write operation, 
• read data from appropriate register and present it on the data bus, in case of  ARM 

read operation, 
 Acquisition Management Logic updates the registers with acquisition state or measured 
data and controls the content of other registers. Such architecture allowed to solve 
the problem of two clock domains described in details in Appendix A:  1.1.  
 Another hardware obstacle, which influenced FPGA logic architecture (described 
in Appendix A: 1.1 ), is the fact that the memory address space mapped to FPGA by ARM 
is smaller than SSRAM size. Therefore, the entire memory space of SSRAM is mapped to 
one FPGA register of one word size (16bits) called readout register. This register is, in turn, 
mapped to certain address in ARM address space. Each time the processor reads readout 
register, new data from SSRAM is provided by Acquisition Control Logic. Because data width 
of bus between ARM and FPGA (16bits) is twice smaller than SSRAM world (32bits), it takes 
two readout operations for ARM read entire SSRAM word. The FPGA logic architecture 
is presented in Figure 11.  
 

 
Figure 11 Acquisition and readout control and dataflow 
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2.3 Hardware-software communication layer  
 
 The hardware-software communication layer is 
understood as an interface between Linux user space and 
FPGA. Its main purpose is to provide communication 
between Interfaces and FPGA. However, the configuration of 
FPGA (sending a binary stream to FPGA) is also included 
into the layer’s tasks.  
 Since Linux is used as operating system, there are two 
possible approaches to interface hardware connected to 
microprocessor and mapped into memory address space: 

• Mapping appropriate address in User Space – 
slower, easier to implement, 

• Writing Linux Device Driver to access appropriate 
address in Kernel Space – faster and much more 
efficient for data transfers, enables interrupt 
implementation, not a trivial task. 

The communication and configuration were decided to be approached separately, choices 
of the appropriate technique for each of them are discussed below in separate subchapters. 
The result is summed up in the Figure 13.  

2.3.1  FPGA configuration 
 In normal operation of UMSWI, FPGA configuration is done during the startup 
of the system. Reconfiguration during system operation is only done in the development 
phase. Therefore, the speed of configuration process is not crucial and it has been decided 
to use simpler and faster to develop User Space mapping to implement FPGA configuration. 

2.3.2 Communication between ARM and FPGA 
 The communication between ARM and FPGA is crucial for system’s operation and 
is one of its basic components. Up to 265 Kb of measurement data needs to be transferred 
from FPGA. To comply with the intention to create universal and extensible system, 
the communication is provided on two levels of abstraction: 

• Interface suited to the implemented Interfaces and Acquisition Logic 
• General interface enabling to extend Acquisition Logic or use the existing Logic 

in a non-standard way. 
Such solutions enables flexibility on both sides of the communication layer. It is possible 
to extend the already existing applications (alternatively, create new applications) to use 
the same Acquisition Logic in non-standard way or to use modified or entirely different 
Acquisition Logic.  
 The communication layer along with FPGA configuration are the only software parts 
of the UMSWI control system which are directly hardware dependent. While the FPGA 
configuration is a simple operation, communication layers is more advanced and its 
architecture needed to be created having in mind easy porting to other hardware 
configurations. Therefore, it was decided to create a Linux Device Driver [30]  with 
architecture clearly divided into abstract and physical layer. Such separation enables 
the driver to be easily portable to other hardware configuration and also makes it easier 
to extend the driver with additional functionality.  
 

Figure 12 UMSWI 
architecture - driver 
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Abstract layer 
 Abstract layer of the driver is responsible for communication between the driver and 
user space (in which all applications are run) and implements the driver’s logic. It is hardware 
independent.  
 
Physical layer 
 Physical layer implements the communication between driver and hardware as well 
as hardware’s initialization.  
 

 
Figure 13  Communication between FPGA and ARM 

2.4  Web User Interface 
 
 Web User Interface is clearly divided into UMSWI 
Management Interface (UMI) and Oscilloscope & Spectrum 
Analyzer Graphic User Interface (O&SA GUI). The former allows 
configuration of UMSWI’s parameters such as IP address,. 
The later is meant to perform measurement and present 
the results in graphical form. Additionally, information about 
system (manuals) are provided by the interface. 
Since Oscilloscope and Spectrum Analyzer GUI is much more 
demanding (in terms of development effort and system 

requirements), sophisticated and crucial to the system, it was 
decided to make the choice of technologies-to-be-used 
according to its requirements and adjust the implementation 
of UMSWI Management Interface to the chosen solutions. 

2.4.1 Oscilloscope and Spectrum Analyzer 
 Architecture of Web User Interface depends greatly on chosen technologies. In general 
three components of the interface can be distinguished: 

Figure 14 UMSWI 
architecture - WUI 
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• Graphic User Interface (displayed in the client’s browser) 
• Web Server 
• Interface between Web Server and hardware (in particular, Linux Device Driver) 

For each of the components, a decision of technology-to-be-used needed to be taken 
considering choices of technologies for the other components.  A review of possible solutions 
for each of the components is included in Appendix A:  2.3, 2.4 and 2.5  
 The choices were made taking into account two criteria: simplicity and limited 
resources. Simplicity of solutions is important for the development and further extensions 
to the system. Resource limitations:  

• Processor speed 
• RAM size 

Simplicity: 
• the less tools need to be cross-compiled  the better – some tools, applications are not 

trivial to port to embedded architecture 
• less sophisticated solutions are easier to test and debug 

 To move much of the workload (i.e. graphic generation, user interface handling) from 
the embedded system to the client PC (far more powerful unit), Java Applet technology was 
chosen for implementation of Web Graphic User Interface. Java Applet is a web application 
which is downloaded and executed in the client’s browser. Since the interaction with 
the client is managed by the applet locally on the client’s machine (unlike in PHP where 
client’s interaction is handled by the server), network traffic can be reduced 
by communicating with the server only during hardware interfacing. Therefore, the role 
of the server is limited to simply passing information/data from/to the driver. This eliminates 
many server requirements imposed by other technologies (i.e. support for PHP).  
 The server’s capabilities influence the choice of technology used to interface hardware 
and vice versa (hardware interface impose requirements on the server). If the Web Server 
embeds scripts interpreter (i.e. PHP) or enables Java Servlets, hardware (through Linux 
Device Driver) can be accessed directly by opening its file representation. However, since 
the server’s requirements from the Web Graphic Interface (web applications) were 
minimized, it is reasonable to choose hardware interface with minimum Web Server’s 
demands as well. Such choice enables to use the simplest Web Server. Therefore, Common 
Gate Interface (CGI) was chosen as an interface between Web Server and Linux Device 
Driver (which implements /proc file system – very convenient for CGI access) 
and consequently the simplest and smallest (9K, [29] ) Web Server provided by BusyBox 
could be used. The choice to use CGI in UMSWI is supported by the following advantages: 

• CGI is well known, well developed and it is still being used by many web pages 
and applications (ex. hotmail.com), 

• It is implemented by most of web servers, does not involve any additional tools to be 
cross-compiled,  

• It allows to execute “CGI scripts” written in many different scripting languages as well 
as compiled programs,  

• Any distribution of Linux enables writing scripts for CGI interface, it means that 
as long as the most basic version (even very old) of Linux is ported for a platform, 
and the most basic HTTP server is available, CGI can be used. As a consequence, 
using CGI makes the whole system very flexible and platform independent.  

Except for the communication with the driver, CGI scripts can be used to manage UMSWI 
control system by performing system calls (i.e. to configure Ethernet Interface) 
or starting/stopping applications (i.e. SCPI Server). Choosing BusyBox Web Server provides 
portability, since such server is available for majority of embedded Linux systems. 
The choice of technologies is summarized in Figure 15. 
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Figure 15 Choice of technologies for Web Interface of UMSWI [31] 

 
 Once the choice of technologies was done, the Web Interface architecture could be 
created (Figure 16 ).  The Web Server stores UMSWI website and Java Applet binaries, and 
provides Common Gate Interface. Once the web site embedding Java Applet is opened, 
the applet is downloaded to the web browser and executed. The applet communicates with 
hardware (Linux Device Driver) through CGI interface. CGI is also used by the UMSWI 
configuration web page.  
 

 
Figure 16 Oscilloscope and Spectrum Analyzer Web architecture 

2.4.1.1 Java Applet architecture 
 One of the system patterns which helps in application design on the abstract, 
architectural level is Model-View-Controller, described in details in Appendix A:  3.2. It is 
a language-independent pattern which is widely used. It was chosen because it allows easier 
and independent modification of visual appearance or underlying business rules. Thus, 
it enables easy extensibility and reusability. It divides the application into three logical 
components: model, view and controller making it easy to customize or modify each part. 
An architecture of UMSWI’s applet organized according to MVC paradigm is presented in  
Figure 17.  
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Figure 17 UMSWI’s architecture according to MVC 
 
 Model represents Oscilloscope and Spectrum Analyzer, it reflects their state. 
Thus, Model communicates with the hardware and changes its settings. View is responsible 
for displaying data provided by Model. Control panel, which enables to change the Model, 
is also displayed by View. Any changes made by user on the control panel are detected by 
the Control component which updates the Model. The control panel enables to adjust two 
kinds of settings: 

• Hardware settings – parameters which can be used to control acquisition logic 
(sampling time, trigger delay, trigger source, record length, trigger level), 

• Display settings – parameters which control the way data is displayed and whether 
it is displayed (Volts/Div, Time/Div, Freq/Div, enable chan1/chan2), 

It also enables control of the device state (start/stop acquisition) and display of the device 
parameters 

2.4.2 UMSWI Management Interface 
 The UMSWI Management Interface is kept simple on demand of CERN’s employee 
who required the device. It includes only the most necessary configuration:  

• IP address (setting current and saving default) 
• Mask (setting current and saving default) 
• Port of SCPI Server 
• SCPI Server on/off 

 The default IP address is saved in the memory and the system is started with such 
address. The possibility of setting of IP address or SCPI Server Port is important when 
the system is integrated into a Local Network Area (LAN) infrastructure or when many 
UMSWIs create distributed measurement system. It was decided to enable starting 
and stopping SCPI Server to save UMSWI’s resources when SCPI Server is not used.  
 Common Gate Interface scripts allows to perform the above-mentioned configuration. 
It would be also possible to use Graphic User Interface developed as Java Applet to do 
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the configuration. However, it was concluded that Java Applet is too heavy 
weighted-technology for such trivial task. Therefore it was decided to prepare simple 
webpage and use Java Script for data verification and calling CGI scripts. The architecture 
of UMSWI Management Interface is very similar to Oscilloscope and Spectrum Analyzer’s 
architecture. Figure 18  presents architecture of entire Web User Interface. 
 

 
 

Figure 18 Web User Interface architecture 

2.5 Remote Measurement Interface  
 
 Remote Measurement Interface (RMI) is described in this 
thesis as an interface which enables UMSWI to be controlled 
remotely by measurement applications (i.e. LabView, Matlab). 
The medium to be used, is determined by the UMSWI’s hardware: 
Ethernet. An in-depth investigation was conducted to choose 
an appropriate interface for implementation. A review of possible 
solutions can be found in Appendix A:  2.2 The following 
requirements were taken into consideration: 

• Well defined and widely used, 

• Modern, 
• Simple, 
• Physical layer: Ethernet. 

 It seems that most of the measurement instrument vendors  (i.e. Agilent, Tektronix, HP) 
offer new high-tech devices with many remote measurement interfaces. However, Standard 
Commands for Programmable Instruments (SCPI) seems to be the most widely 

Figure 19 UMSWI 
architecture 
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implemented. The medium of data transfer has changed from GPIB or RS to Ethernet 
and USB, however the SCPI standard is still alive. What is more, SCPI can be used by most 
of the popular measurement applications (like LabView) and applications which can connect 
with measurement instruments to retrieve measurement data(i.e. Matlab). Therefore, it was 
decided to implement Standard Command for Programmable Instruments (SCPI).  
 The SCPI standard is shortly described in Appendix A:  3.3. The standard defines 
command’s structure and syntax but does not specify underlying hardware or software 
solutions.  Figure 20  presents example SCPI command and its architecture.  
 

 
Figure 20 SCPI example command 

 
In principal, an input to the RMI application is a string of characters consisting of a command 
(message), or a set of commands separated by (;)semi-colons.  Each command message 
is composed of a sequence of mnemonics separated by (:) colon and an argument. The path 
determined by mnemonics unequivocally determines what action shall be performed. 
 Remote User Interface needs to be an application which implements TCP/IP socket 
server (called SCPI server in this thesis), it accepts and responds to the request from 
measurement application clients. The architecture of SCPI Server is presented in Figure 21. 
Interpretation of SCPI commands consists of two phases: parsing and decoding. 
It is followed by command execution using Hardware Interface. Parsing is device-
independent. It depends on the syntax which is common for all the SCPI command. After the 
command has been divided into mnemonics and argument, the command must be decoded 
and executed. The decoding depends on the commands dictionary (which is based on 
the controlled hardware capabilities)  Execution is device dependant. It needs to be 
implemented for the particular device. This is why the architecture of SCPI server is modular. 
 

 
Figure 21 SCPI server architecture 

 
SCPI standard strictly determines server to the following messages: 

1. Device settings information if a query is inputted, 
2. Measurement data, if data acquisition is turned on. 
3. Error codes (a digit) if an error occurs. 

To provide user with more information about RMI application performance and detailed error 
messages, a logfile Interface is used. All the messages about performance of each 
component of the application and detailed error messages are written to a file. 
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2.5.1 A Note on SCPI Complience 
 When implementing SCPI command interface two approaches are possible: 

• Full SCPI compliancy 
• SCPI “look and feel” commands 

Full SCPI compliancy requires to follow strictly SCPI Standard documentation which defines 
what certain commands should do, what commands to include for certain instrument classes, 
etc. Often, full SCPI compliancy is not implemented. Instead, by giving the user the “look and 
feel” of SCPI, the user will be immediately familiar with the equipment’s control. 
This approach is extremely common amongst instrument manufacturers. Studying 
Tektronix’s [7] , RIGOL’s [6]  and other companies’ programmer’s manuals of digital 
oscilloscopes, it was noticed that some of the SCPI commands found in the manuals do not 
comply with SCPI standard but seem useful and reasonable, while mandatory SCPI 
commands are not implemented because they are not necessary. 
 The  “look and feel” approach was taken in the implementation of SCPI standard for 
Measurement Interface of Universal Measurement System. 

2.6 Summary 
 
 Figure 22 summarizes the architecture of UMSWI. For each of the required interfaces 
(measurement and web interface) a server is provided. Remote Measurement Interface 
server implements Standard Command for Programmable Instruments (SCPI), 
thus it is called SCPI Server. The Web Server is provided by Busybox [32] . SCPI and WEB 
servers communicate with hardware (in order to control acquisition process and retrieve 
measurement data) using Linux Device Driver. Since SCPI server is developed from 
scratches, it implements communication with Linux Device Driver. Web Server needs 
Common Gate Interface (CGI)  to communicate with Linux Device Driver. 
 

 
 

Figure 22 UMSWI architecture [31] 
 
 A client to Remote Measurement Interface Server, in principle, is any measurement 
application (i.e. LabView, Matlab) which enables control of remote instruments via TCP/IP 
using SCPI commands. A client to Web Server is a web browser with Java Script and Java 
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Applet enabled. Java Applet requires Java Virtual Machine installed on the client. 
All the UMSWI-related software is stored on SD/MMC card enabling easy update 
and modifications. 
 A careful choice of technologies and well-thought planning resulted in very portable, 
flexible and easily extensible software architecture. The requirements towards Linux utilities 
are very basic. The HTTP server needed for the system to operate is provided by Busybox 
(used by most of the embedded Linux distributions) and only adds 9K, which is not much 
ever for the Linux distributions with strong memory constraints. In principle, the HTTP server 
with CGI interface is the only requirement for Linux distribution to run the system.  
 The only hardware dependant parts of the system are: Linux Device Driver 
and application which configures FPGA. Only these two components need to be changed 
to run the system on different hardware. 
 Application of MVC architecture in applet should result in easy extensions or changes.  
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3. Design and Implementation 

3.1 Development environment 
 
 The Universal Measurement System with Web Interface (UMSWI) was being 
developed for 2 years. It took considerably long time to establish the most convenient 
development environment, tools  and workstation.  
 A typical cross-development environment according to [26]  is presented in Figure 23. 
A host is a development workstation, a PC or Laptop, running Linux distribution.  
 

„Webster's defines nonsense as "an idea that is absurd or contrary to good 
sense." It is my opinion that developing embedded Linux platforms on a non-
Linux/UNIX host is nonsensical.” [26]  

 
A target is referred to embedded hardware platform (UMSWI). Thus, native development 
is understood as building of applications on and for the host system. On the contrary, cross-
development means the compilation and building of applications on the host system that are 
supposed to run on the embedded system. 

 
Figure 23 Layout of cross-development environment [26] . 

 
 The configuration presented in Figure 23  was used during most of the development 
of UMSWI. In the final stage of the development, setup was extended to the one presented 
in Figure 24 . The host development system was connected to a target board via RS-232 
and Ethernet. A serial terminal program (minicom) was used to communicate with the target 
board via RS-232. The u-boot bootloader, which is stored in the target’s flash memory, was 
started automatically after the power-up. It is a very powerful tool which enabled the image 
of Kernel along with root filesystem to be downloaded to target board using TFTP protocol 
over Ethernet. Once downloaded the image was run. During development, NFS root mount 
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for target board was used. Linux ran on the target board mounted the root filesystem located 
on the host over NFS. There are many advantages of such a solution :  

• Root file system is not size-restricted, 
• Any changes to application under development are available to target system 

immediately, the same files are available to target and host system simultaneously, 
• Kernel can be debugged and booted before developing proper root file system, 
• It makes development much faster and easier. 

  A second development computer running Windows XP was used for development 
and debugging of VHDL design of FPGA logic. This computer is called FPGA development 
and debugging workstation. Both workstations were connected using NFS file system. 
It made file exchange very convenient. Altera Quartus II software tool was used 
for development and debugging of FPGA logic. The debugging was performed using 
Quartus II tool called Signal Tap II Embedded Logic Analyzer and Byte Blaster II cable. 
Signal Tap II is a system-level debugging tool which enables to capture and display real-time 
signals in any FPGA design. Signal Tap II connects via Byte Blaster II download/upload 
cable with JTAG connection to device under test. The Windows workstation was also used 
for website development and partly for Applet development with Eclipse. The Eclipse KDE 
was run on both workstations. 
 

 
Figure 24 UMSWI development setup 

 
 The setup (applications) used for development of Universal Measurement System with 
Web Interface is summarized in Table 2. It was learnt painfully by the author that the most 
crucial was the choice of Linux distribution for the workstation. During the first year 
of development SUSE10.2 Linux distribution was used. Under SUSE, few cross-compilation 
toolchains were tested, e.g. Buildroot and Dan Kegel's crosstool. These toolchains were 
troublesome to build and not satisfactory in embedded Linux development. Many books 
about Linux embedded systems, i.e. [33]  and [34] , mention that Debian distribution is very 
convenient for embedded system development. Therefore, Debian Linux was installed on 
the development workstation. It was a very positive change for the UMSWI project 
development. A considerable number of packages, including ARM development tools 
(i.e. cross-compilation toolchain), is available for Debian (and Debian-related Linux 
distributions).  The package installation is easy and fast. A cross-compilation toolchain 
provided as a Debian package by Free Electrons [35]  was used during development 
of Linux, fpga driver and SCPI Server. The toolchain is based on uClibc library popular 
among embedded Linux systems developers. The usage of uClibc library allows to save 
memory space (details in Appendix A:  3.1).  
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UMSWI part tool/KDE Operating System 

 
Embedded Linux 

 
Debian  Linux 

 
Linux Device Driver 

 
Debian Linux 

 
SCPI Server 

 

ARM cross-toolchain 
(Debian package) 

Debian Linux 

 
Java applet 

 
Eclipse Windows XP/Debian Linux 

 
Website 

 
- Windows XP 

 
FPGA logic 

 
Alera Quartus II Windows XP 

Table 2 UMSWI development tools 

3.2 Embedded Linux Operating System 
 
 The Linux, which is used on UMSWI, is based on TWarm Project [36] . Since 
the ARMputer module and TWarm board are very similar, the hardware configuration 
and ports could be applied to Embedded Linux System on UMSWI (with necessary 
modifications).  

3.2.1 Components 
Root filesystem 
 The root file system is based on Filesystem Hierarchy Standard (FHS)[37] . The FHS 
was trimmed, removing the directories used to provide an extensible multiuser environment, 
such as: /opt/, /home, /mnt and /root. Only the essential directories were left.  

 
Figure 25 root filesystem hierarchy 

Kernel 
The main component of the Embedded Linux is the kernel. Kernel used in UMSWI is based 
on TWarm Project kernel. It is a 2.6.19 “vanilla” kernel [38]  patched with AT91 Linux 2.6 
appropriate patch [39]  with necessary changes to Ethernet PHY.  
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Busybox 
Busybox 1.00 was used to accommodate the root file system with necessary Unix tools 
which are all symlinks to a single Busybox executable. 
C Library 
The library was provided by the cross-compilation toolchain which links the cross-compiled 
applications against uClibc, instead of GNU C library (glibc). uClibc is a special C library 
for embedded systems which is very popular and supports many platforms (i.e. ARM, MIPS, 
PPC). It provides most of GNU C library functionality. Most of the applications that can be 
compiled against glibc, should also compile and run using uClibc. It substantially reduces 
embedded systems’ size. Only the most necessary library files where copied to the root file 
system.  

3.2.2 Configuration 
Kernel  
The most important features of kernel’s configuration (Figure 27 ) include: 

• Initial RAM fylesystem and RAM disk (initramfs/initrd) support 
• Initramfs enabled with source from a give directory  
• Ethernet (10 or 100Mbit) for AT91RM9200 support 
• Configured for AT91RM9200 processor (ARCH_AT91RM9200) with support 

for AT91RM9200-DK Development Board and AT91RM9200-EK Evaluation Kit 
• Boot command: “mem=64M root=/dev/mem rw console=ttyS0, 115200”  which means 

o “mem=65M” – force usage of a specific amount of memory, 
o “root=/dev/mem rw” – specifies root filesystem 
o “console=ttyS0, 115200” – use serial port number 0 as output console device, 

baund rate: 115200 
• USB support enabled 
• Ext2 and VFAT file system support 
• /proc file system support 
• NFS boot support (during development) 
• AT91 SC/MMC Card Interface support 

Busybox  
The most important of Busybox’s configuration (Figure 26 ) include: 

• Build Busdybox as a static binary (no shared libs) 
• Support reading inittab 
• httpd Web Server enabled 
• Support for Common Gateway Interface (CGI) 
• ifconfig enabled with “hw” option 
• telnetd, tftp enabled 
• support for mounting NFS file systems 

 

  
Figure 26  Busybox configuration Figure 27 Linux kernel configuration 
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3.2.3 System boot and startup  
 Booting sequence of Embedded Linux implementing initrafs is presented in Figure 28 .  
 

 
Figure 28 Booting sequence with initramfs [40, page 73]  

 
Bootloader  
At the startup, the bootloader is executed automatically from a given location, usually with 
very little space. Therefore, 2 stages are implemented [29] : 

1st stage bootlader  – offers minimum functionality and is meant to access and execute 
the 2nd stage bootloader on a bigger location, 

2nd stage bootlader  – offers the full bootloader functionality, it can be even an operating 
system itself. 

According to [28]  the important features of bootloader include: 
• Support for embedded hardware 
• Storage footprint 
• Support for networking 
• Support for flash booting 
• Console UI availability 
• Upgrade solutions availability 
• Argument passing from the boot loader to Linux kernel 
• Memory Map 
• Calling PPROM routines from the kernel 

Three bootloaders suitable for ARM-based embedded systems [29]  :  
• Das U-Boot: Universal Bootloader from Dentx Software [41]  
• RedBoot: eCos based bootloader from Red-Hat [42]  
• uMon: MicroMonitor general purpose, multi-OS bootloader [43]  

In TWarm project, Darrell Harmond’s bootlooader [44]  (with necessary modifications) is used 
as a 1st stage bootloader (called loader in this thesis) and Das U-boot (with necessary 
modifications) is used as  2nd stage bootloader (called u-boot in this thesis). During 
the development phase, both loaders were used like in TWarm project. U-boot provides 
many useful utilities, it allows to download kernel image with Trivial File Transfer Protocol 
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(TFTP), it passes to kernel boot parameters and PHY parameters (i.e. MAC address), it also 
enables different kinds of booting (from network, MMC/SD card, etc). However, since it was 
decided to boot the kernel and root file system from flash memory, it turned out that u-boot 
is not necessary in the normal boot process of UMSWI, provided some modifications are 
made in Linux start-up script, BusyBox’s configuration and Darrell Harmond’s bootloader.  
 A tool enabling MAC address to be set from Linux (Networking Utilities  
---> ifconfig/Enable option “hw” (ether only)) was added in BuysBox configuration and Linux 
start-up script (/etc/inittab) was appended to set up MAC address. The loader was modified 
to perform default Linux start after short delay and BusyBox start on request. Modified 
loader’s menu in presented in Figure 29 . It was decided to leave the possibility of starting  
u-boot, since it can be useful for further development and there is enough space in the flash 
memory. However, a modification was made to the address in which the u-boot is started.  
 

 
Figure 29 Modified loader’s menu 

Userspace  
UMSWI specific startup operations are done in three steps: 
1. The MMC/SD card with UMSWI utilities is attempted to be mounted 

in /usr/ARMscope/location. The /usr/ARMscope/ folder hold all the custom-made UMSWI 
utilities. The mounting is done in /etc/init.d/rcS (Figure 30 ) system initialization script  

2. /usr/ARMscope/start (Figure 32 ) script is called (in /etc/inittab) . This script is used for 
the UMSWI utilities initialization and can be modified by the user easily. It starts 
the following initialization (by calling appropriate scripts):  
• Configures FPGA (config_FPGA script) 
• Loads FPGA driver (load_driver script) 
• Starts SCIP server (if option enabled) 
• Sets the default IP (set_IP script) 

3. httpd web server is started as “respawn” (/etc/inittab file,Figure 31 ) 
 

 
 

Figure 30 /etc/init.d/rcS system initialization script 
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Figure 31  /etc/inittab file 

 
 

 
 

Figure 32 /usr/ARMscope/start script 
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3.2.4 UMSWI utilities organization 
 Tools and data which are used by UMSWI are stored in /usr/ARMscope folder in root 
file system and on MMC/SD card. Its organization is presented in Figure 33 . 

 
Figure 33 UMSWI utilities organization 

 
FPGAconfig  holds the .rbf file with FPGA logic configuration and a small application which 
configures FPGA. 
FPGAdriver  holds FPGA Linux Device Driver compiled as a loadable module  
scpi_server  holds SCPI server application 
www  holds: 

• the UMSWI website (in www/),  
• CGI scripts (in www/cgi-bin/), two kinds: 

o used in applet-driver communication (in www/scripts/oscilloscope/) 
o used for system configuration (in www/scripts/systemConfig/) 

• oscilloscope and spectrum analyzer applet (in www/oscilloscope/) 
• data available on the website, i.e. Matlab scripts (in www/downloads/) 
• images used on the website (in www/images/) 

data  holds information which needs to be stored between boots, i.e. default IP 
start  is a script which starts UMSWI utilities 

3.3 Implementation of the FPGA logic in VHDL 
 
 Data acquisition and readout are managed by Field Programmable Gate Array (FPGA). 
The logic for FPGA was created in Very High Speed Integrated Circuits Hardware 
Description Language (VHDL) using Altera Quartus II programmable logic device design 
software. 
 ADCs require low-jitter clock while ARM needs an independent clock for data readout. 
Therefore there are two clock domains (see Appendix A: 1.1 ) and different parts of the logic 
needed to be divided according to the clock domain affiliation (Table 3 ). 
 

90 MHz 100 MHz 
 
1. Communication with ARM 

a. Control register 
b. Readout 

2. SSRAM control during processor readout 

 
1. ADC control  
2. SSRAM control during data acquisition 
3. ONLINE data analysis 
4. Data acquisition parameters 

implementation (delay, length, 
sampling time) 

 
Table 3 FPGA logic design components according to frequency affiliation 
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In terms of clock domain, there is a clear division between FPGA<->ARM communication 
(Communication Logic) and the rest of the logic (Acquisition Management Logic) which 
is reflected in the architecture of entire FPGA logic. Unfortunately, SSRAM needs to be 
operated with two different clocks depending on the state (acquisition/readout). General 
design of FGPA logic is presented in Figure 34.  
 

 
Figure 34 Data acquisition and readout design 

3.3.1 Communication logic  
Data acquisition is controlled by parameters described in chapter 2.2. Additionally, 
the following parameters were added during development: 

• Readout start address – enables to set the address from which data readout 
is started. By default, readout starts from the address where first acquisition data 
was stored (at the moment of trigger detection or after delay) 

•  Test mode – enables and controls tests of SSRAM. 
Parameters returned by acquisition process: 

• Status - indicates state of acquisition process, 
• Start address pointer - indicates the first address in SSRAM where acquisition data 

is stored. If delay time is zero, it is the address of the sample during which trigger 
occurred. If delay time is greater than zero, it is address of the sample stored when 
the appropriate delay time was counted down. 

• Stop address pointer – indicates the last address of the acqusition data stored 
in SSRAM. 

The parameters are stored in FPGA registers which are mapped into ARM address space.  
The readout register, which enables the acquired data to be transferred from SSRAM 
to ARM,  is also implemented as FPGA registered mapped into ARM address space 
and managed by the same logic.  
 Signals responsible for communication between FPGA and ARM are connected 
on the ARM’s side to Static Memory Controller (SMC) which is a part of External Bus 
Interface (EBI). SMC generates signals that control access to external static memory or 
peripheral devices (up to 8 devices chosen by chip select lines NCSx). It is fully 
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programmable and can address up to 512 M bytes. On the FPGA side write/read controller 
and address decoder are implemented to manage communication with ARM. Figure 35 
presents datasheet schema which was used to connect ARM pins with FPGA pins. 
It determines the type of communication.  
 

 
Figure 35 Shows how to connect a 16-bit device without byte access on NSC2 [45] 

 
The following signals enable communication between ARM and FPGA: 

• D[15:0] – bidirectional data bus 
• A[15:0] – address bus 
• NSC0 – chip select number 0 
• NWE –  write enable 
• NOE – output enable signal 

The communication protocol is defined in ARM datasheet [45]  and can be adjusted 
by manipulating several parameters (Table 4). 
 

Name Description Value SMC setting 

Wait select 
enable 

 
Enables/disables wait states (additional cycles 
during which NWE/NOE pulse is held low ) 
 

enabled WSEN =1 

Number of 
wait states 

 
Defines the read (NOE) and write (NWE) signal 
pulse length from 1 cycle to 128 cycles 
 

1 NWS = 1 

Data read 
protocol 

 
Standard or Early Read Protocol 
 

Standard DRP = 0 

Setup delay 

 
Time between the moment when address is 
available on the bus and write/read enable pulse is 
set. 
 

1 cycle RWSETUP = 1 

Hold delay 
 
Length of the read/write enable pulse 
 

1 cycle RWHOLD = 1 

Pulse delay 

 
Time between the end of read/write pulse and 
moment when data ceases to be valid on data bus 
 

  

Table 4 Communication SMC settings 
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Graphic interpretation of the parameters mentioned in Table 4 is provided in Table 5 and in 
Figure 36 . 
 

 
Figure 36 Interpretation of NRD/NWR Setup, Pulse Length and NWR/NRD Hold parameters 
 

Number of 
Wait States  Read Access Write Access 

0 

  

1 

 
(1) Early Read Protocol 

(2) Standard Read protocol 

 

Table 5 Interpretation of Wait State parameter 
 
In principle, the write/read controller is activated when Chip Select signal (NCS) goes low. 
The address then is decoded. NWE and NOE signals are monitored, depending which signal 
goes low, appropriate action is performed (reading/writing). The algorithm is presented 
in Figure 37.  

 
Figure 37 Communication Logic flowchart 



 Universal Measurement System with Web Interface 
 

Maciej Lipiński  44 

 
 The choice of SMC parameters, which is presented in Table 4 , was made through tests 
using Signal Tap II Embedded Logic Analyzer. Signal Type II is a tool included with Altera 
Quartus II software which helps debugging an FPGA design by probing the state of internal 
signals in the design. Example test of read access is presented in Figure 38 . The figure 
shows correct readout. However, write access presented in Figure 39  indicates 
that the parameters are inappropriate – only half of the word is written. 
 

 
Figure 38 FPGA-ARM communication test 

 

 
Figure 39 FPGA-ARM communication test 

  
The communication interface between FPGA and ARM is summarized in Figure 40 . 
 

 
 

Figure 40 ARM-FPGA interface 
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3.3.2 Acquisition Management Logic 
The process of acquiring data can be divided into three phases:  

• Idle  –  no writing/reading to/from SSRAM, parameters can be set, 
• Armed  – storing data in SSRAM continuously, waiting for trigger, 
• Acquisition  – storing required number of samples in SSRAM after trigger  

occurred (and trigger delay was applied) 
It seems reasonable to store the data read from ADCs continuously in SSRAM (Armed 
phase). The memory is treated as circular buffer. When acquisition is ought to start (trigger 
detected and delay time counted), the address of appropriate sample is remembered. 
The processor readout by default starts from this address. Such a solutions enables the user 
to view data which occurred before the trigger signal (as long as the record length is not 
equal to 128k, which is the SSRAM size). The proposed acquisition process is summarized 
in Table 6.  
 

No Description 
State 
name 

1 

 
Parameters are stored in FPGA registers: 

sampling time, record length, delay, trigger source, trigger level 
 

I 
D 
L 
E 

2 

 
Data is stored continuously to SSRAM with programmed frequency (sampling 

time). If the trigger by signal level has been chosen, simultaneously the level of 
acquired signal is compared with the trigger level value stored in FPGA register. 

 

A 
R 
M 
E 
D 

3 
When trigger signal is detected, the delay counter is activated 

 

T 
R 
I 
G 

4 

After appropriate delay has been counted, the SSRAM address is stored in 
FPGA register and data acquisition is started by activating sample length 

counter. 
 

D 
E 
L 
A 
Y 

5 

After appropriate number of samples is stored in SSRAM, the end address is 
saved in FPGA register and the bit indicating that data has been acquired is 
activated. This is a signal for ARM processor that data is ready for readout. 

 

A 
C 
Q 
U 
I 
R 
E 

Table 6 Acquisition process 
 
 Moore finite state machine (FSM) was designed to control data acquisition and readout 
(Figure 41 ). State machine is in 100 MHz domain. However, it is controlled by registers 
which communicate with ARM in 90 MHz clock domain. Communication between control 
registers and microprocessor is available regardless of the FSM state. 
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Figure 41 Finite state machine 
 
FSM consists of five main states and two SSRAM test states. Testing features were added 
in the debugging phase of the project. It was necessary in order to test SSRAM and data 
buses at the working frequency. Detailed description of all the FSM states is provided 
in Table 7 . 



 Universal Measurement System with Web Interface 
 

Maciej Lipiński  47 

  
State Description 

IDLE 

 
No acquisition, no data readout, all the acquisition parameters are recommended to be 
set in this state 
 

WAIT TRIG 

 
Clock domain of SSRAM is switched to 100 MHz. Data is read from ADCs and written to 
SSRAM in sampling time intervals (multiples of 10ns) continuously. SSRAM works as a 
round buffer. FSM is in this state until trigger is detected or device is “dis-armed” by the 
user. 
The following parameters are loaded from control registers during this state: delay time 
and sample length. It means that change of this parameters by microprocessor in the 
subsequent states, will not affect current data acquisition process. 
 

TRIG DELAY 

 
If trigger delay is not enabled by the user (trigger delay time equals 0), FSM skips this 
state. In this state, data is acquired with the appropriate frequency (sampling time). Time 
set by the user (delay time, multiple of 10ns) is counted down, starting from the trigger 
occurrence. After appropriate time has collapsed, SSRAM address is stored as start 
address pointer in the control register. By default, readout starts from this address. 
However, the address from which readout shall be started, can be set by the user. 
 

CAPUTRE 

 
Data stored to SSRAM with appropriate frequency (sampling time) for user-defined time 
(number of samples). 
 

COMPLETED 

 
Acquisition is stopped and SSRAM clock is switched to 90 MHz. Flag bit in status control 
register is set to indicate that data is read for readout. The default readout start address 
can be changed. This state is maintained even after the readout is completed. So there is 
possibility to read data multiple times. Return to IDLE state is possible only after ARM bit 
in control register is set to zero (device “dis-armed”). 
 

WRITE 
SSRAM 

 
Data is written to SSRAM as if during acquisition. Instead of writing data from ADCs, data 
is generated by FPGA. There are few test modes which determine what data shall be 
written to SSRAM: 
• writing address to the memory indicate by the address, 
• writing 0x5555 to even and 0xAAAA to odd addresses on channel 1 and 0x0000 to 

channel 2, 
• writing 0x5555 to even and 0xAAAA to odd addresses on channel 2 and 0x0000 to 

channel 1, 
• writing 0x0000 to both channals and all addresses 
 

READ SSRAM 
 
Data is read from the memory (only for Signal Tab II observation) 
 

Table 7 Description of FSM states. 
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 Data (2 x 10bits) is read from both Analogue to Digital Converters (ADCs) 
simultaneously and written to the same SSRAM word (32bits) under the address indicted 
by the address counter. Data and address bus width between ARM and FPGA are both 
16 bits. Therefore, it is possible to access from ARM directly only 216 = 64 K of 16-bit words. 
Since SSRAM has 128 K 32-bit words, it is only possible to access directly 25 % of SSRAM.  
 Since microprocessor access to SSRAM data is always performed by reading 
consecutive words starting from a given address, it was decided to solve the problem 
by mapping entire SSRAM memory into single 16-bit register (readout register). Each time 
the readout register is read, the address counter is incremented. Since data bus between 
FPGA and ARM is only 16-bits, one SSRAM word (32-bit) is read in two turns. The least 
significant bit (LSB) of readout counter indicates which half of the SSRAM word is read 
(high or low). Readout counter is incremented each time read operation is detected on 
the readout register. The idea is presented in Figure 42. 
 
 

 
Figure 42 Measured data flow 

3.3.3 Trigger detection 
There are four possible trigger sources  

a) ARM/AUTO – the user triggers acquisition, it is done by writing appropriate bit 
in control register 

b) External trigger – signal connected to special trigger input 
c) Channel 1 – trigger by level of input signal to ADC on channel 1 
d) Channel 2 – trigger by level of input signal to ADC on channel 2 

These trigger sources fall into two categories: 
1. Trigger source is a signal from ADC ( c & d ) 
2. Trigger source is a binary signal ( a & b ) 

In both cases, trigger is detected in so-called edge detector by analyzing four consecutive 
samples of a binary signal and recognizing appropriate trigger edge (falling/rising). In further 
case (2), the source is a binary signal which can be directly an input to edge detector 
(bit in control register, TRIG IN). In former case (1), the source is an analogue signal 
translated by ADCs to vector discreet values. Thus it needs to be translated into a binary 
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signal which, in turn, is an input to the edge detector. The translation is done 
by a comparator. Signal value is compared with set (by the user) trigger level. If signal value 
is greater than trigger level, high level (‘1’) is set on the comparators output, otherwise low 
level (‘0’) is outputted ( Figure 43 ).  

 
Figure 43 Trigger detection process 

3.4 Linux Device Driver 
 

“Device drivers take on a special role in the Linux kernel. They are distinct 
“black boxes” that make a particular piece of hardware respond to a well-
defined internal programming interface; they hide completely the details of 
how the device works.  User activities are performed by means of a set of 
standardized calls that are independent of the specific driver; mapping those 
calls to device-specific operations that act on real hardware is then the role 
of the device driver. “ [30]  

 
 Device drivers allow to interact with hardware devices from user space. They provide 
an abstract layer between hardware and the application/script, thus the higher-lever 
application code can be written independent of the underlying hardware.    
 In this project device driver is needed to provide interface between Linux user space 
application (SCPI server) or scripts (CGI) and logic implemented in FPGA. Since the system 
is meant to be universal (logic implemented in FPGA can be customized or replaced 
completely), the driver needs to provide flexibility. The driver is also clearly divided into 
logical and physical layers to make porting to other architectures as simple as possible 
(Table 8 ).  
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Functionalityy  Description Layer File name 

Driver logic 

 
Hardware independent implementation of 
driver’s logic, uses custom read/write functions 
to access hardware 
 

abstract 
oscilloscope.c 
oscilloscope.h 

Hardware 
configuration 

 
Called during driver’s initialization, used to 
configure hardware (by writing appropriate 
registers with appropriate settings) and map 
physical address into virtual memory address 
space. Hardware dependent because the 
configuration needs to be appropriate to the 
underlying hardware. No direct hardware 
access. 
 

FPGA_config.c 
FPGA_config.h 

Read/write 
function 

implementation 
 

 
Functions used to access hardware directly by 
reading or writing appropriate address. 
 

physic 

k_IOfpga.c 

Table 8 Drivers structure 
 

3.4.1 Abstract layer 
 The fpga driver was developed as character device driver. Char devices are accessed 
through names in the filesystem. Those names are called device files or nodes and are 
conventionally located in the /dev directory. Char nodes are identified by a “c” in the first 
column of the output of ls –l. This command prints also the information about device numbers 
(major and minor). The major number identifies the driver associated with the device. 
The minor number is used to determine exactly which device is being referred to. fpga  driver 
implements two kinds of device numbers allocation. By default, it allocates device number 
dynamically since there is a constant effort within Linux kernel development community 
to move over to the use of dynamically-allocated device numbers and a randomly picked 
major number can lead to conflicts and troubles if the driver is more widely used. In case 
a static allocation is desired, it is possible to specify device number at the load time.  
 The fpga  implementation uses a global variable, fpga_major, to hold the chosen 
number (there is also a fpga_minor for the minor number). The variable is initialized 
to FPGA_MAJOR_NUMBER, defined in fpga.h. The default value 
of FPGA_MAJOR_NUMBER in the distributed source is 0, which means “use dynamic 
assignment.” The user can accept the default or choose a particular major number, either 
by modifying the macro before compiling or by specifying a value for fpga_major 
on the insmod command line. 
 The fpga driver connects four basic operations with the reserved device numbers 
through file_operations structure (defined in <linux/fs>).  The structure is a collection 
of function pointers. Each open file is associated with its own set of functions which are 
in charge of implementing the system calls. A file_operation structure in fpga driver is called 
fpga_fops (according to convention). There are for fields in the structure which point to 
the functions in the driver that implement the following specific operations (Figure 44 ): 
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struct module *owner 
Not an operation but a pointer to the module that “owns” the structure. This field is used 
to prevent the module from being unloaded while its operations are in use. It is simply 
initialized to THIS_MODULE, a macro defined in <linux/module.h>. 
 
int (*fpga_ioctl) (struct inode *, struct file *, unsigned int, unsigned long); 
Implements ioctl system call which offers a way to control device. 
 
int (*fpga_open) (struct inode *, struct file *); 
The first operation performed on the device file. It is used to track the number of opened 
device references 
 
int (*release) (struct inode *, struct file *); 
This operation is invoked when the file structure is being released. It is used to track 
the number of opened device references. 
 

 
Figure 44 File operations structure 

 
Internally, fpga represents each device with a structure of type struct fpga_Dev (Figure 45 ), 
its components are described below. 

 
Figure 45 Structure which represents FPGA device. 

Struct cdev 
The kernel uses structures of type struct cdev to represent char devices internally. Before 
the device’s operations can be invoked by the kernel, cdev structure must be allocated 
and registered. The structure and its associated helper functions are defined 
in <linux/cdev.h> which needs to be included in the driver’s code. Since the cdev structure 
is embedded within fpga_Dev structure, it is allocated using cdev_init() function. 
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void *pFPGAaddr 
A pointer to the beginning of virtual address of FPGA address space. This pointer is used 
as a base address of all the I/O functions (read/write). It is obtained using ioremap_nocache 
function.  
 
int refcount 
Keeps the number of opened references to the device. It is incremented each time 
fpga_open  function is called, and decremented each time fpga_release function is called. 
 
char device_name[10] 
Name of the device, represents the driver in user space (/proc/drivers/fpga) and kernel space 
 
parameters_t parameters 
 A structure storing acquisition parameters (Figure 46 ).  
 

 
Figure 46 Structure storing acquisition parameters 

 
unsigned int cmd  
unsigned int state 
unsigned int startAddr 
unsigned int stopAddr 
unsigned int startRDaddr 
char dataAcquiredFlag  
unsigned int readout_number 
unsigned int test_register 
Variables which reflect the content of appropriate registers in the FPGA logic. 

3.4.1.1 Debugging 
 During the driver’s development debugging was done extensively. Kernel programming 
brings its own, unique debugging challenges. Kernel code cannot be easily executed under 
debugger, nor can it be easily traced, because it is a set of functionalities not related to 
a specific process. Driver errors can bring down the entire system, thus destroying much 
of the evidence that could be used to track them down. 
 
printk  
There are few ways to debug Linux Device Driver, the most commonly used (in general 
and during development of fpga driver) is monitoring, which in applications’ programming 
is done by calling printf at suitable points. In Kernel debugging, the same can be 
accomplished using printk. The printk function behaves similarly to the standard C library 
function printf. It is defined in Linux kernel. The kernel needs its own printing function 
because it runs by itself, without the help of the C library. The kernel messages are 
appended to /var/log/messages or printed to the current console.  
 During the development printk was very useful, however, in the final release 
of the driver printing messages to the console or log file is unnecessary and unwanted.  
On the other hand, printk functions can be found useful if a bug is detected or during further 
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development of the driver is needed. Therefore, all the printk functions which were used for 
debugging purposes, are included in the pre-processor #ifdef DEBUG condition and can be 
enabled/disabled necessary. 
 
/proc 
Another technique used for debugging during the driver’s development was querying 
the system which can be done by creating a file in the /proc file system. It is a special, 
software-created filesystem that is used by the kernel developers to export information 
to the world. The content of the files under /proc is generated on the fly by functions tied 
to each file.  
 This solution is heavily used in the Linux system by many utilities such as ps, top 
and uptime to get their information. Some drivers export information via /proc. The /proc 
filesystem can be very conveniently used with CGI scripts to export information from 
the device and even control the device. Therefore, it is the fpga driver’s main mean data 
information exchange and control. This solution, however, has an important disadvantage, 
which needs to be mentioned but does not overweight advantages. Adding files under /proc 
is discouraged by the kernel developers as /proc fileystem is seen as “a bit of an uncontrolled 
mess that has gone far beyond its original purpose” [30] . 

3.4.1.2 /proc filesystem 
 In order to create a read-write /proc file, the driver must implement two functions: 
a function to produce the data when the file is read and a function to read and interpret 
the data when a file is written to. When a process (application) reads from fpga driver’s /proc 
file, the kernel allocates a page of memory. The data written to the page by the driver 
in read-function, is returned to user space. The function presented in Figure 47  assumes 
that there will never be a need to generate more than one page of data (it returns value 
of one control register: 16 bits) and so ignores the start and offset values. All of proc_read 
functions in fpga driver, but one, can be implemented in such a simple way, since the amount 
of data returned by them is precisely known and is less than a page.  
 

 
Figure 47 Function which generates data when /proc/fpga/cmd file is read 

 
 The only exception is the function that returns the measurement data. The amount 
of data returned is not constant, it depends on the acquisition parameters. It is very likely that 
more than one page of data is returned. Thus implementation of multiple pages /proc file was 
necessary. It was done using seq_file interface. This interface provides a set of functions 
for implementation of large kernel virtual files. It assumes that the /proc virtual file steps 
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through a sequence of items that must be returned to the user space, therefore, an “iterator” 
object needs to be created. Seq_file needs four iterator methods called start, next, stop 
and show. 
 The start function is always called first (Figure 48 ). It reads record length FPGA 
register to find out how many double words is to be read. It also reads test FPGA register 
to check whether the reading is performed in normal mode or in test mode. If a specific test 
mode is on, the data is outputted in a special form. pos is an integer position indicating how 
many double words have been read. 
 

 
Figure 48 Implementation of start method in the seq_file interface 

 
The next function should move the iterator to the next position (Figure 49 ). It increments 
the pos variable and checks it against the expected number of words to be read. It returns 
NULL if there is nothing left in the sequence. 
 

 
Figure 49 Implementatin of seq_next 

 
When all the acquired data is read and the kernel is done with the iterator, it calls stop 
function. There is no action required in fpga driver implementation, so the function is empty. 
In between these calls, the kernel calls show (Figure 50 ) method to output measurement 
data to the user space. This method creates output for the item in the sequence. It uses 
special function for seq_file output (seq_printf). The show function reads two words (16bits ). 
It performs two consecutive accesses to the address of readout register. Each access 
increments the SSRAM address counter in FPGA logic. One call to show function causes 
one SSRAM word (32bits) to be read. Each SSRAM word consist of the measurement 
from 2 ADCs. 
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Figure 50 seq_file show method which outputs measurement data to user space 

 
The data read from SSRAM is in Binary Offset format, which is determined by the ADC’s 
hardware mode setting. To make the driver universal and user-friendly, it was decided that 
the output format of the data should be readable. Since only natural numbers are allowed 
in device drivers, and the resolution of ADCs is approximately 1mV (10 bits and 1ppV gives 
1000mv/1024), it was decided to output data in milivotls. The show function performs 
the necessary conversation. To make SSRAM testing more convenient, the data is outputted 
in the hex format during test mode. 
 All the iterator operations (start,stop, next, show functions) are packaged 
up and connected to a file in /proc by filling in a seq_operations structure (Figure 51 ) 
and creating a file implementation. The connection to /proc is made creating file operations 
structure (Figure 52 ) and necessary open method (Figure 53 ), which connects the file to 
the seq_file operations.  
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Figure 51 Seq_operations structure 

 
Figure 52 File operations structure 

 
Figure 53 Proc open method 

 
 The FPGA logic (i.e acquisition) can be controlled by writing appropriate data to /proc 
files. This is possible by binding write_proc functions with /proc files. Figure 54 presents 
implementation of function called when /proc/fpga/cmd file is read. 
 

 
Figure 54 Implementation of write_proc function 



 Universal Measurement System with Web Interface 
 

Maciej Lipiński  57 

buffer is a pointer to a page of data retrieved from user space. This data is read and 
interpreted by the function. Then appropriate hardware access is performed. 
 All the read_proc and write_proc functions need to be connected to entries in the /proc 
hierarchy using.  This is done in procfs_register function (Figure 55 ). In the first place, the 
function allocates memory for the proc device data structure which is used to pass 
information between read_proc and write_proc of readXwords /proc entry. Then the 
appropriate /proc path is created (/proc/driver/fpga) and registred. Finally, all the /proc entries 
are connected to appropriate functions (read_proc and/or write_proc accordingly). 
As an example, Figure  55 presents how cmd /proc entry is bound with appropriate functions. 
 

 
Figure 55 procfs_register function 
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3.4.1.3 ioctl  
 Most drivers implement ioctl system call, which supports user space requests 
via the ioctl method. In the user space, the ioctl system call have the following prototype: 
 

int ioctl(int fd, unsigned long cmd, …) 
 

The dots in the prototype represent a single optional argument. In fpga driver 
implementation, a pointer to a structure is mostly used since it enables to exchange any 
amount of data with user space. The driver’s header file defines structures which are passed 
to the ioctl system call as the third argument. User programs must include that header file 
to control the driver. The header defines also symbolic names representing commands’ 
numbers. Figure 56 presents an example implementation of ioctl command called “cmd”. 
Ioctl commands need to copy data to or from the user address space. It is done by 
the following kernel functions, which copy an arbitrary array of bytes and sit at the heart 
of the ioctl implementation. 
 
unsigned long copy_to_user(void __user *to, const void *from, unsigned long count); 
unsigned long copy_from_user(void *to, const void __user *from, unsigned long count); 
 
The usage of these functions can be seen in cmd implementation on Figure 56. 
In CMD_WRITE, the data (number representing a command) is copied from the user-space 
and written to the hardware. In CMD_READ, the data is read from the hardware, filtered 
and copied to the user-space. This schema is repeated with the implementation of the other 
ioctl command. 
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Figure 56 ioctl driver method 
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/proc and ioctl functionality  
/proc file entries and ioctl commands implemented by fpga driver provide the same 
functionality. Therefore, both can be used interchangeably. Table 8 presents the driver’s 
interface (/proc and ioctl). Ioctl’s third argument is a pointer to data structure, depending 
on the command, 5 different data structures are used to exchange data between user-space 
and the driver. The structures are presented in Figure 57 . 
 

 
Figure 57 ioctl data structures 

 
 
The driver interface is divided into: 

• general purpose – can be used to access FPGA with any configuration, prepared 
for custom-made configuration, 

• FPGA control logic specific – specific for the control logic implemented in FPGA,  
• oscilloscope specific – for oscilloscope/spectrum analyzer implementation. 



  

  

Ioctl /proc filesystem 
Command name 

Ioctl command Arg File mane format R/W Example commands  

Reset RESET - reset 1 W Echo 1 > reset 

General FPGA access FPGA Fpga_t fpga 
r/w Addr data 

(hex) 
R/W 

Echo w 0x220 0x33 > fpga 

Cat fpga 

CONFIG_READ 
Configure 

CONFIG_WRITE 
singleReg_t Config 

Number 

(decimal) 
R/W Echo 1 > config 

Ext. trigger, rising slope, 

sampling time disabled 

CMD_READ 

Command 
CMD_WRITE 

singleReg_t cmd  R/W 

Echo 16 > cmd 

Echo 32 > cmd 

Echo 48 >cmd 

ARM 

TRIGGER 

ARM & TRIGGER 

Status STATE_READ singleReg_t state  R 

Cat state 

1 

2 

3 

 

Data acquired 

ARMED 

Data acquired and armed 

PARAM_READ 
Parameters 

PARAM_WRITE 
Parameters_t parameters 

Len:time:delay 

(decimals) 
R/W Echo 20:0:0 > parameters 

START_RD_ADDR_READ 
Custom start read address pointer 

START_RD_ADDR_WRITE 
singleReg_t startRDaddr startAddr (hex) R/W Echo 200 > startRDaddr 

Address pointers (start & stop) ADDR_POINTERS_READ dataX2_t addressPointers 
StartAddr stopAddr 

(hex) 
R 200 500 

Read single data DATA_1_READ singleReg_t readSingleData 
0xdata 

(no converstion, hex) 
R Cat readSingleData 

Read two words (one SSRAM word) DATA_2_READ dataX2_t read2words 

Voltage_ADC_1 

Voltage_ADC_2 

(converted, decimal, [mV]) 

R Cat read2words  

Read x SSRAM words DATA_X_READ dataX_t readXwords 
Volt_adc1, volt_adc2 

(converted, decimal, [mV]) 
R/W 

Echo 20 > readXwords 

Cat readXwords 

Read entire measurement data   readresult 
Volt_adc1, volt_adc2 

(converted, decimal, [mV]) 
R Cat readresult 

Test TEST singleReg test  R/W 
Echo 21 > test 

Cat test 

Table 9 ioctl/proc interface 



  

  

3.4.2 Physical layer 
 Physical layer comprises of the function which are hardware dependent. In particular 
there are two kinds of such functions: 

• Read/write, 
• Hardware configuration and memory mapping. 

Read/write functions  are wrappers of special kernel I/O memory access functions (provided 
via <asm/io.h>). Read/write wrappers enable to abstract physical layer from logical layer. 
During development they allowed to test various hardware access solutions without changing 
logical layer. Read/write wrappers implement the specific types of I/O access which 
are needed in logical layer, namely: 

• Read/write 16 bits from/to FPGA 
• Read/write 32 bits from/to FPGA 
• Read/write 32 bits from/to ARM SMC register 

All the wrapper functions embed debugging facilities and memory barriers which prevent 
compiler optimization.  
 Since the data bus width between ARM and FPGA is 16 bits, 32-bit access to FPGA 
is performed as two 16-bit accesses. Moreover, due to hardware problems, the least 
significant byte of the address is ignored, when addressing control registers. Therefore,  
32-bit access to FPGA is implemented in the following way ( Figure 58  ): 
 

 
Figure 58 2 words (32-bits) FPGA IO functions 

 
The functions presented on Figure 58  are used, for example, when accessing acquisition 
parameters ( sample length, sampling time, trigger delay). These parameters are more than 
16-bit wide, thus they are stored in two consecutive control registers. However, only one 
wrapper function needs to be used to read their value ( Figure 59 ). 
 

 
Figure 59 Using FPGA IO functions 
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On the other hand, the wrapper function which is used for setting configuration registers 
in ARM can access 32 bits at once. Therefore, the implementation is much simpler (Figure  
60). 
 

 
Figure 60 Implementation of read/write ARM register functions 

 
The main task of configuration and memory mapping function  are 

• Map control registers of External Bus Interface (EBI) User Interface, Static Memory 
Controller (SMC) and Power Management Controller (PMC) into virtual address 
space, 

• initialize EBI, SMC and PMC with appropriate parameters, 
• map I/O physical address into virtual address space. 

The EBI Chip Select Assignment Register is used to determine to which Chip Select pin 
the FPGA is connected. FPGA address bus and data bus are connected to Static Memory 
Controller(SMC). SMC controls access to external static memory and peripheral devices. 
It is fully programmable by setting appropriate parameters in the SMC Chip Select Register 
( Table 10 ). The frequency on which SMC works is set by writing PMC Programmable Clock 
Register (PMC_PCK) and PMC System Clock Enable Register (PMC_SCER). 
 



 Universal Measurement System with Web Interface 
 

Maciej Lipiński  64 

 
Name Description Value SMC setting 

Data width 
 
Determines data bus width 
 

16 bits DBW = 1 

Data float time 

 
External bus is marked occupied and 
cannot be used by another chip select 
during TDF cycles 
 

0 TDF = 0 

Byte access type 

 
Used if data width is 16 or 32 bits, 
defines whether chip select line is 
connected to two/four 8-bit wide devices 
or one 16 bit wide device 
 

 BAT = 0 

Wait select enable 

 
Enables/disables wait states (additional 
cycles during which NWE/NOE pulse is 
held low ) 
 

enabled WSEN =1 

Number of wait states 

 
Defines the read (NOE) and write 
(NWE) signal pulse length from 1 cycle 
to 128 cycles 
 

1 NWS = 1 

Data read protocol 
 
Standard or Early Read Protocol 
 

Standard DRP = 0 

Setup delay 

 
Time between the moment when 
address is available on the bus and 
write/read enable pulse is set. 
 

1 cycle 
RWSETUP = 

1 

Hold delay 
 
Length of the read/write enable pulse 
 

1 cycle 
RWHOLD = 

1 

Table 10 SMC configuration 

3.5 Binding Web Interface to Device Driver with CGI  
 
 The communication between applet and hardware (more precisely Linux Device Driver) 
is performed using Common Gate Interface (CGI).  
 

“CGI is the part of the Web server that can communicate with other programs 
running on the server. With CGI, the Web server can call up a program, while 
passing user-specific data to the program (such as what host the user 
is connecting from, or input the user has supplied using HTML form syntax). 
The program then processes that data and the server passes the program's 
response back to the Web browser” [3] . 
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A short explanation how CGI scripts work is included Appendix A: 2.3. Table 11  presents 
structure of CGI requests. 
 

Action GET request send by the applet to the server 
 

Read from hardware 
 

/cgi-bin/oscilloscope/get_name_.cgi 

 
Write to hardware 

 
/cgi-bin/oscilloscope/get_name_.cg?param_value 

Table 11 GET requests: _name_ is the name of hardware parameter [31] . 
 
 In Universal Measurement System with Web Interface CGI is used in a non-standard 
way. It is called from the applet application and the output is never shown to the user directly. 
It is either ignored (when data is send to the hardware) or stored in applet variable for further 
processing. The applet provides special universal functions to read/write data from/to 
hardware. Such functions create appropriate requests to the server, send them and read 
the answer. The method used to pass the data to the server is GET.  Since GET is used, 
server stores the argument of the request (everything after ‘?’) in environmental variable 
QUERY_STRING which can be read in the script. Example “get” and “set” scripts 
are presented in Figure 61 ,  detailed description is also provided. 
 

 
 

Figure 61 Example CGI scripts with a detailed description [31] . 

3.6 Web Interface 
 
 The Web Interface of Universal Measurement System with Web Interface is based on 
a simple website which enables to navigate through the utilities provided by UMSWI:  

• UMSWI system management and configuration interface (Java Script),  
• Oscilloscope and Spectrum Analyzer Graphic User Interface (Java Applet), 
• Information about the project, 
• Manuals (including example scripts in Matlab). 

The layout of the website is meant to be simple and intuitive. The structure of UMSWI’s web 
page and its layout is presented in Figure 62 . 
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Figure 62 Design of UMSWI web site layout and structure. 

 
The website employs Cascading Style Sheets (CSS) [46]  to separate the presentation layer 
from the document’s structure and content. Using CSS makes development of the website 
easier in terms of presentation consistency and its changes, since visual effects of entire 
website (all the web pages) can be controlled from one location: myStyleSheet.css 
document. The style sheet document is imported by all the web pages of the website. 
If the look of the website’s pages need changes, modification in myStyleSheet.css 
is propagated throughout the entire server – automatically. CSS makes also development 
of new pages much easier, since import of the style sheet document by the new web page 
makes its “look and feel” identical as the rest of the rest of the website. The drawback 
of the CSS is its inconsistent browser support. Therefore, special attention needs to be paid 
to test the website in various browsers and, if necessary, implement so-called CSS “hacks” 
to achieve consistent layout among different browsers. However, this drawback is a minor 
problem for UMSWI’s website because it’s layout is not sophisticated,. 
 There is a developer’s website of UMSWI on the authors home page [47] . It provide an 
extended version of the website which is available on UMSWI. The extension include 
sections which provides HOWTO including detailed description about system development, 
source codes, binaries and information how to use them. 

3.6.1 Oscilloscope and Spectrum Analyzer GUI 
 Oscilloscope and Spectrum Analyzer GUI is implemented as Java Applet designed 
according to Model-View-Controller (MVC) paradigm [61]. One of the methods 
of implementing MVC in Java is the Observer-Observable pattern, which is described 
in Appendix A: 3.3 . It was decided that the Observer-Observable pattern would be used 
in relation between model and view. Thus, the model implements observable and all 
the views implements observer interface. If a model parameter is updated, all the registered 
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observers are notified. The following constraints were established for the applet’s design, 
which is presented in Figure 63 : 

• All the parameters representing hardware and view settings are stored in the model 
(only), 

• The main model (DevModel) is a holder of oscilloscope (OscilloscopeModel) and 
spectrum analyzer (AnalyzerModel) models, 

• DevModel implements observable, and creates an interface to access 
OscilloscopeModel and AnalyzerModel which does not implement observable, 

• DevModel accesses hardware though FpgaUtils, 
• FpgaUtils class is used to interface hardware and does not store any parameters 

(unless in offline mode), 
• To minimize transfer between client and server, hardware parameters are set only 

when the oscilloscope is being armed (the acquisition is started), 
• Views implement observer interface, 
• Different panels of Control Panel are implemented as independent observers (called 

control widgets) 

 
 

Figure 63 MVC implementation design 

3.6.1.1 Model 
 Figure 64  presents simple UML class diagram of classes which constituted Model and 
classes associated with it. 

 
Figure 64 Class diagram of Model related classes 
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Device Model (class DevModel) 
The DevModel class is the main Model class which takes the role of a container of the other  
model classes. Each device (oscilloscope, spectrum analyzer,….) is represented by its own 
class that implements functions specific to that device. However, View & Controller 
components of MVC architecture interface only DevModel and have no knowledge 
of the other classes. It means that all the methods of OscilloscopeModel or AnalzyerModel 
which need to be called by View or Controller need to be represented in DevModel. 
Only DevModel implements observable, thus it is responsible for notifying observers about 
parameters changes. This class manages also communication with hardware 
(through FpgaUtils) and stores hardware parameters as well as the attributes representing 
device state. In order to eliminate unnecessary communication between the client 
and the server, changes of hardware parameters made by the user on the Control Panel are 
not instantly followed by writing new parameters to the device. The hardware parameters 
are sent to the device, only before the acquisition is started. Once the acquisition is finished, 
the hardware parameters are read from the device and saved in variables representing 
hardware setting during the latest data acquisition. Also the raw data from the device 
is saved in the Model. It means that DevModel stores two representations of hardware 
settings: 

• Hardware parameters to be written to the device when the acquisition is started, they 
determine the settings of a new acquisition 

• Hardware parameters which were set when the latest acquisition took place. 
Such solution solves the problem of using device by multiple clients or from multiple 
browsers. However, it does not solve the concurrency problem (when two measurements are 
done from different clients simultaneously). Since the parameters are set just before data 
acquisition is started, each client can set different parameters and change it independently. 
 
Oscilloscope Model (class OscilloscopeModel) 
It holds all the parameters representing view settings of the oscilloscope  (i.e. time/div, 
volt/div, x-axis & y-axis start positions of the signal) and implements methods used 
for calculations connected with oscilloscope display. The View is only displaying data 
and perform no calculation. It is OscilloscopeModel class responsibility to provide View with 
positions in which data needs to be displayed on the screen (screen vectors). Model 
implements functions which perform the following actions: 

• Calculate screen vectors according to current display settings (time/div, volts/div), 
• Retrieve current screen vectors, 
• Calculate distance between “ticks”, 
• Set and get values of all the display parameters. 

 
Analyzer Model (class AnalyzerModel) 
It holds all the parameters representing view settings of the spectrum analyzer (i.e. freq/div, 
spectrum start position), instantiates class responsible for FFT calculation and implements 
methods used for calculations connected with spectrum display. The View is only displaying 
data and perform no calculation. It is AnalyzerModel class responsibility to provide View with 
positions in which data needs to be displayed on the screen (screen vectors) and scaling 
factors to print appropriate scales on the display margins. Analyzer model implements 
methods which perform the following actions: 

• Prepare data for FFT calculation, instantiates FastFourierTransform object and uses 
it to calculate FFT on the prepared data and returns the spectrum, 

• Look for spectrum maximum value (used for scaling view and scales) 
• Calculate spectrum scales, 
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• Convert spectrum to decibels, 
• Calculate screen vectors for spectrum (in volts and decibels), 
• Look for maximum spectrum frequency, 
• Set and get screen parameters. 

 
Fast Fourier Transform (class FastFourierTransform) 
The FFT algorithm was not implemented by the author. Open source implementation 
by Tsan-Kuang Lee from University of Pennsylvania is used [48] .  
 
Check Device State (class CheckDevState) 
This class implements Runnable interface which enables its instances to be executed 
by a thread. The thread is started when acquisition is initiated (pressing : “SINGLE”, 
“NORMAL” or “AUTO”). The task of CheckDevState depends on the “mode” of acquisition 
and trigger type: 
• AUTO mode – it triggers acquisition, checks device state until the data is ready 

for readout, calls readout function and re-starts the cycle (triggering acquisition), 
• SINGLE or NORMAL  modes  

o User-defined trigger – checks whether the “Trigger” button was pressed, once 
the button has been pressed, it triggers acquisition, checks device state until 
the data is ready for readout, calls readout function and stops acquisition 
(and re-starts the cycle), 

o Channel or external trigger – checks device state until the data is ready 
for readout, calls readout function and stops acquisition (in SINGLE mode) 
or repeats the cycle (in NORMAL mode). 

 
FPGA Utilities (class FpgaUtils) 
The class implements communication with hardware through CGI scripts. This class provides 
two kinds of methods: 

• Universal hardware set/get methods which enables to call any CGI script on 
the server, 

• Oscilloscope implementation specific methods which enables to set/get acquisition 
parameters – they use universal methods in their bodies. 

The communication, in universal hardware get/set methods, is implemented using HTTP 
Tunneling and GET requests described in [49] .  They allows to communicate with the server 
through HTTP socket connection on port 80. This way, the firewalls can be bypassed 
and server-side programs do not have to return complete HTML documents, instead only 
data can be returned. The limitations to this method include the fact that the requests 
responses are received by the applet directly, not the browser and the only server the applet 
can tunnel to, is the server from which the applet was downloaded. The limitations 
are acceptable for the methods implementation in UMSWI. 
 An example FpgaUtils method enabling to get data from hardware is presented 
in Figure 65 . The method uses  URLConnection class provided by java.net. package. 
The class contains methods which enable to communicate with URL over the network from 
the applet.  
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Figure 65 Implementation of HTTP Tunnelling and GET requests 

 
The method responsible for setting data to the hardware is very similar to the get method. 
The main difference is the parameter passed in the URL address (Figure 66 ) 
 

 
Figure 66 Forming URL request which sends parameter to the hardware 

 
FpgaUtils enables the applet to be used offline. The applet is offline, if it has no access 
to CGI scripts. Such situation happens when it is not run from the target machine 
(i.e. in Eclipse’s Applet Viewer).  FpgaUtils implements function which automatically, during 
its initialization, checks whether the applet is offline/online. In offline condition, 
communication with hardware is simulated. All the hardware parameters are written 
to variables instead of writing them to hardware. Consequently, parameters are read from 
the variables rather than from hardware. The measurement data, instead of being read 
from the hardware, is generated by a WaveGenerator class. Such solution was designed to 
make the development easier and faster by enabling running the applet in Applet Viewer 
or on authors homepage[47] .  
 
Wave Generator (class WaveGenerator) 
Generates sine, cosine, triangle, square and sawtooth waveforms with user-defined 
parameters (frequency, amplitude, sampling rate, DClevel). Source: [48]  
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3.6.1.2 View 
 The applet was initially design to be an oscilloscope only, therefore it attempts 
to resemble a traditional oscilloscope front panel. The graphic user interface is divided into 
a screen widget (OscilloscopeScreen) and a control panel (controlPannelGUI). The screen 
is meant to present acquired data according to view settings. The control panel enables 
to change the device state, display device parameters and adjust two kinds of settings: 

• Hardware settings – parameters which can be used to control acquisition logic 
(sampling time, trigger delay, trigger source, record length, trigger level), 

• Display settings – parameters which control the way data is displayed and whether 
it is displayed (Volts/Div, Time/Div, Freq/Div, enable chan1/chan2), 

Throughout the applet’s development, the GUI look evolved. The changes were caused 
by the user feedback and addition of functionalities to the applet, i.e. the spectrum analyzer 
was added in the final state of applet’s development. The newest version of the applet was 
(and still is) available on the author’s home page [47] . Since the applet is designed to work 
“offline”, it could be put on the faculty’s server and tested by users.  
The addition of the functionalities was based on users feedback and project requirements 
(spectrum analyzer).  The final GUI design is presented in Figure 67. Since some functions 
are not used during the normal applet usage and due to the space limitations, an auxiliary 
panel displayed in a separate window was introduced. The Auxiliary Panel is opened upon 
user’s request by clicking right mouse button on the screen. Auxiliary panel includes:  

• Enabling test data and setting the kind of test data, 
• Displaying raw data, 
• Scaling factor setting. 

 
 

Figure 67 Final GUI design 
 
A detailed UML Class Diagram of View-related classes is presented in Figure 68. 
All the View –related classes implement Observer interface. They register to observable 
Model. View-relate classes hold no data. All the data retrieved from the user is stored 
in the Model. All the data displayed by View-related classes is retrieved from the Model. 
Therefore, the View is never out-of-date.  
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Figure 68 UML Class Diagram of View-related classes 
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Screen Widget (class ScreenWidget) 
ScreenWidget is responsible for generation of the applet’s screen image. It uses so-called 
double-buffering. This means that drawing is done to an offscreen image in the first place. 
When generation of the offscreen image is finished, it is drawn on the screen. Such solution 
reduces screen flickering. The tasks of ScreenWidget includes: 

• Drawing grid, title and all the other constant components of the screen, 
• Drawing measurement data from channel 1 or/and 2 (if enabled) starting from 

appropriate position (the screen view can be moved by dragging it with a mouse 
or changing position on control panel), 

• Drawing spectrum and its scales, 
• Drawing “ticks” (similar to oscilloscope cursors), 
• Showing Auxiliary Panel. 

 
Auxiliary Panel (class AuxiliaryPanel) 
 Implements control of auxiliary functions: 

• Hardware reset - triggers reset of FPGA logic,  
• Scaling factor – data read from the device is multiplied by this value 
• Show Raw Data – displays data read from the device (scaled by scaling factor) 
• Test Data Enable – it is possible to force offline behaviour of the applet which results 

in generation of waveforms  
 
Control Panel GUI (class ControlPanelGUI) 
 This is nothing more than a container for widgets implementing control panels, 
in particular: AcquisitionParameters, ControlButtons, DeviceSettings, FFTPanel 
and TimeDivPanel. All the control widgets enable to set device parameters, display settings, 
or change device state. None of the values are stored in the widgets, a value retrieved from 
the user is instantly used to update the Model.  

3.6.1.3 Controller 
 In Java, controllers are the listeners in Java event structure. Each component that 
interacts with the user needs to implement some kind of event listener. Such method updates 
appropriate value in the model. It is important that the neither View nor Controller stores any 
data internally. This way the view is never “out of date”, since it displays data retrieved from 
the model.  
 
 Figure 69 presents simplified UML diagram explaining how hardware parameters 
are set in UMSWI. 
 

 
Figure 69 UML Diagram describing applets’ hardware interfacing [50]  
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3.6.2 UMSWI management and configuration 
 The management and configuration interface of UMSWI is implemented using HTTP 
forms, Java Script and Common Gate Interface (CGI). HTTP forms provide buttons and input 
fields. Java Script functions verify input data and call CGI scripts. CGI scripts perform system 
calls to change system configuration or start/stop SCPI Server. The web page layout 
is presented in Figure 70 . 

 
Figure 70 UMSWI configuration and management web page layout 

 
The webpage is divided into three parts: 
1. Current system configuration information – it reads current IP address and net Mask 

when the webpage is loaded. Java Script function checkIP() calls getipaddress.cgi script 
which make ifconfig system call. The output of the call is interpreted by checkIP() to get 
IP address and net Mask. checkIP() is presented in Figure 71.  

 

 
Figure 71 Example Java Script script using CGI 
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2. Change of system settings – enables to get default, set current and store in memory 
as default IP and Mask.  

i. Get default  – reads IP/Mask value from default_ip/default_mask file stored 
in /usb/ARMscope/data folder. Default IP/Mask is set on the start-up of the device 
by set_ip script. 

ii. Save as default   - it gets the value of IP/Mask from the form input field, verifies 
the input data correctness (IP/Mask has special format) and saves the IP/Mask 
inputted in form field in default_ip/default_mask file. Default IP/Mask is set on 
the start-up of the device by set_ip script. 

iii. Set current IP & Mask  - it gets the value of IP and Mask from the form input fields, 
verifies the input data correctness (IP and Mask have special format) and sets the IP 
and Mask calling setnewip.cgi script. The script uses ifconfig system call to set 
the new system configuration  

3. SCPI server configuration – it enables to set the system to start SCPI automatically 
on device start-up, it is also possible to start/stop the server, get default and store 
in memory port number. 

i. Enable/disable SCPI auto start  – it modifies the default_scpi_autostart file stored 
in /usb/ARMscope/data folder. If auto start is enabled, the file is written with 
“Enable”, otherwise it holds “Disable”.  start_scpi script, which is called during 
system start-up, reads default_scpi_autostart file and starts SCPI server if “Enable” 
is read, otherwise SCPI Server is not started, 

ii. Get default  – calls the getdefaultport.cgi script which reads the default_port file from 
/usr/ARMscope/data folder, 

iii. Save as default  – it gets the value of Port from input field, verifies the input data 
(Port has special format) and saves the Port number in default_port file. Default Port 
number is used by the start_scpi script on system start-up to run SCPI Server, 
proved the automatic SCPI server start is enabled, 

iv. START - it gets the value of Port from input field, verifies the input data (Port has 
special format) and calls startscpiserver.cgi which starts the SCPI Server 
on the provided port, 

v. STOP – calls stopscpiserver.cgi which stops the server process, 
vi. TEST – calls testscpiserver.cgi which calls ps system command and looks for SCPI 

Server process, 
vii. READ SCPI LOG FILE  – calls getscpilogfile.cgi script which opens the log_file 

located in /usr/ARMscope/data. SCPI Server writes to log_file detailed information 
about its performance, especially errors. 

3.7 Measurement Interface 
 Measurement Interface is implemented as a SCPI Socket 
Server with commands interpreter and hardware interface using 
C language. An information about SCPI standard and its syntax can 
be found in Appendix A: 3.4 . Figure 72 presents example SCPI 
message and its elements. Figure 73 presents design of SCPI 
Measurement Interface. It is a small application which takes as 
an input argument the kind of user interface (server or local). 
If the application is started as server, the second argument needs 
to be provided, the argument is the number of port on which server 
is listening. Details of program implementation of each of the 
application’s components are described in the following subchapters. 

Figure 72 SCPI 
command 

message elements 
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Figure 73 SCPI Server design 

3.7.1 User interface 
 The main user interface of the SCPI Measurement 
Interface application is a socket server. It implements 
internet stream sockets which are characterized 
by IP Address and port number. Stream sockets use TCP 
to provide reliable two-way connected communication. 
A local interface was needed during development. 
It is a simple command line interface. 

3.7.2 Pre-parser 
 Pre-parser is a single function (pre_parse_cmd()) 
which receives data from the user as a single string 
of characters. It extracts separate commands (command 
messages) by looking for semicolons. The outcome of this 
function is a dynamically allocated linked list of separated 
commands. 

Figure 74  Communication layers 

3.7.3 Parser 
 For each element of the linked list returned by pre-parser, parser function 
(parse_cmd()) is run. It extracts and recognizes elements (mnemonics, argument) which 
compose the command. Mnemonics are checked against a list of known mnemonics. 
If the extracted mnemonic is not found on the list, an error is returned.  
 As SCPI syntax allows full names and abbreviation of the mnemonics and determines 
that the parser is not case sensitive, the following approach was taken. For each mnemonic, 
an abbreviation and full name needs to be placed in the list of available shortcuts. 
The names are divided into several lists according to the abbreviation length. The extracted 
mnemonic is converted into uppercases and checked against the lists (starting with the list 
with the longest shortcuts). If the mnemonic is found, it is added to the head of a linked list 
associated with the command which is being parsed. If it is not found on the list, an error 
is returned.  
 Consecutive commands do not have to start each time from the root (“:”). It means that, 
if a command is executed (i.e.  :SENS:SWE:TIME 1) and the consecutive command has 
the same path (i.e. :SENS:SWE:POIN 100), SCPI standard sais that it is enough to input 
the last mnemonic (i.e. POINT 100) instead of the full path. This is why the parser, before 
starting to extract mnemonics, checks whether the full path is provided (starting with “:”).  
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If colon is not detected at the beginning of the command, linked list from the previously 
performed parsing is taken deleting only the last element (head) of the list. The outcome 
of the parser function is a linked list of consecutive mnemonics which compose the header 
and command’s argument. 

3.7.4  Commands decoder 
 A dictionary of available commands was 
translated into a data tree (Figure 76 ). Each node 
of the tree is associated with a mnemonic and is 
represented by a structure that holds (Figure 75 ): 
• mnemonic’s name,  
• list of pointers to child-nodes, 
• pointer to a function associated with the node. 

   
 

 

 
 

Figure 76 C implementation of SCPI dictionary  
 
Based on the data tree, a set of C-files defining nodes’ relations and command functions 
were created. A C-file representing the parent node (i.e. TRIGger) defines its connections 
with children nodes (i.e. MODE, SENSe, STATus) and functions associated with children 
nodes (Figure 77 ). 
 

Figure 75  Command structure 



 Universal Measurement System with Web Interface 
 

Maciej Lipiński  78 

 
Figure 77 Defining nodes relations and function associations 

 
To make development and further extensions easier, the following file naming convention 
has been established: 

scpi_NODE1_NODE2_...._NODEx.c 
scpi_NODE1_NODE2_...._NODEx.h 

3.7.5  Command logic 
 Command logic is implemented for each node in the function associated with the node. 
A pointer to this function is held in the data tree. SCPI Standard requires all the commands 
(except: :*CLS, :*RST, :RUN, :STOP, :AUTO)  to answer a query. Query is defined 
as a header with question mark “?” at the end (argument). For the end nodes (nodes without 
children), a query returns value of the setting associated with the node. For the middle nodes 
(nodes with children), a query returns settings associated with all the children nodes. 
To make the implementation of command logic easier and faster, a special function has been 
defined which takes as an input a list of possible arguments (i.e. ?, AUTO,CH1,CH2,EXT). 
It recognizes the argument and returns its index in the list. In principle, a function which 
implements a command logic has structure presented in Figure 78 . 
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:  
Figure 78 Template of function implementing command’s logic 

3.7.6  Hardware interface 
 Hardware interface uses Linux Device Driver to control FPGA. The driver is interfaced 
by reading and writing appropriate files in /proc/driver/fpga directory.  

3.7.7 Logfile interface 
 Each time SCPI Interface application is opened, a new logfile is created. All 
the messages concerning application performance are written to the logfile. A special 
function (print_to_logfile) is defined to make the process simple and efficient. Studying 
a logfile, the entire process of command parsing, decoding and execution can be followed 
step-by-step. It makes much easier finding errors SCPI commands send by the user (Figure  
79). 
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Figure 79 Example SCPI log file 

3.7.8 Extendibility  
 New commands (nodes) can be added to the SCPI Measurement Interface. In order 
to do that, the following actions needs to be taken: 
1. PARSER - entry needs to be added to the list of recognized mnemonics and its 

abbreviations in the scpi_parser_data.h 
2. COMMAND DECODER –a node in the data tree needs to be added by:   

a. Declaring new node (appropriate header, depending on the node’s location in data 
tree), 

b. Creating a pointer in the parent node (appropriate C-file, depending on the node’s 
location in data tree) 

c. Creating a pointer to the function implementing command’s logic (appropriate 
C-file, depending on the node’s location in data tree), 

3. COMMAND LOGIC – an appropriate action associated with the new command needs 
to be implemented (appropriate C-file, depending on the node’s location in data tree) 

4. recompilation. 
A detailed instruction describing how to extend SCPI Measurement Interface with is included 
in SPCI Manual available on the UMSWI website 
 Figure 80  summarizes parsing and decoding process for “:sens:swe:poin 10 ; 
:trig:edge:sour auto ; :run ” input string. 
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Figure 80 Explanation of parsing and decoding process 
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4. Testing 

4.1 Development test 
 
 Testing was performed for each of the system’s components separately. Once a part 
of the system was proven to work correctly, it was added to another correctly working 
component, to eventually, create a working system. Such management made 
the development easier and more efficient.  The order of development and tests was 
following: 
1. Development and tests of Embedded Linux, 
2. Development and simulation of FPGA logic, 
3. Development and tests of Linux Device Driver without interfacing hardware, 
4. Development and tests of Java Applet without interfacing Linux Device Driver, 
5. Tests of Java Applet which interfaces Linux Device Driver without interfacing hardware 

(FPGA logic), 
6. Development and tests of SCPI Server without interfacing Linux Device Driver, 
7. Tests of SCPI Server and Linux Device Driver without interfacing hardware 

(FPGA logic), 
8. Tests of FPGA logic and Linux Device Driver (interfacing hardware), 
9. Tests of Java Applet interfacing Linux Device Drvier interfacing hardware (FPGA 

logic), 
10. Tests of SCPI Server interfacing Linux Device Driver interfacing hardware (FPGA 

logic), 
11. Development and tests of UMSWI management and configuration interface. 
During the development, when a test analogue input signal was required, two sources 
of signal were used: 

• Stabilized power supply for constant input, 
• Music card output, waveforms generated with Cool Edit 2000, waveform generator.                                                                                                                                                                              

4.1.1 Embedded Linux Operating System 
 Tests of Embedded Linux were conducted by checking whether the required by project 
utilities and peripherals work correctly: 

• Ethernet, 
• MMC/SD card , 
• USB (optional), 
• httpd (web server). 

4.1.2 Linux Device Driver 
 The driver was initially tested without interfacing hardware. The driver’s architecture 
separates hardware interface from the driver’s logic and the actual communication between 
the driver and hardware is limited to reading and writing registers at appropriate address. 
Therefore, it was possible to test thoroughly driver’s logic by substituting the operation 
of reading/writing hardware by reading/writing variables and outputting information about the 
operation to the terminal/log file. Once logic was proven to work correctly, the hardware 
interface was tested by examining Static Memory Controller (SMC) control signals 
on the microprocessor’s pins. Further testes of the driver were done along with Java Applet, 
SCPI Server and FPGA tests. 
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4.1.3 FPGA debugging 
 FPGA logic was firstly tested using Quartus II Simulator tool which enables functional 
and timing simulation. Only simulation was done at the beginning, since the author was not 
provided with recorder module.  
 When the hardware was available, the logic was tested during its operation (in real 
time) using Signal Tap II tool provided by Quartus II. The SignalTap II Embedded Logic 
Analyzer [51] enables to debug an FPGA design. It does not require changes to the design 
or external probes in order to capture the internal nodes’ or I/O pins. The device memory 
is used to store the captured data. 
 FPGA testing was started with FPGA-ARM Communication Logic. It was needed 
to work correctly before starting tests of Acquisition Management Logic which is controlled 
from ARM. SignalTap II enabled to see the signals coming from ARM microprocessor, 
therefore it was possible to determine whether the hardware part of the driver was working 
correctly. Thanks to the Signal Tap, it was also possible to establish the right SMC 
parameters used in FPGA-ARM communication and described in 3.3.1 Communication 
logic . During the tests of FPGA-ARM communication, a multitester turned out to be useful 
as well. Some of the problems encountered during attempts of communication were caused 
by minor faults in the hardware of UMSWI. In particular, unconnected pins of address 
and data bus. After this experience, to avoid tedious debugging of the FGPA logic done 
in vain, the hardware was always tested first. Therefore the control logic of acquisition 
process was extended to allow tests of SSRAM and the address (data)bases. The following 
tests were performed to proof SSRAM reliability: 

• Instead of storing in SSRAM data read from ADC, data was generated FGPA 
was written to SSRAM and than read, two kinds of data were generated: 

o Data equal to the address of writing, 
o 0xAAAA and 0x5555 in subsequent addresses, 

• Electrical values of the pins were measured - two missing connections were detected. 
SignalTap was also used to debug and improve the acquisition control logic, mainly 
the trigger and delay timing to make sure it is correct. 
 

 
 

Figure 81 Debugging FPGA 
 
 Final tests of FPGA logic and Linux Device Driver where done applying a signal 
(from known source) and performing entire measurement using /proc file system interface 
of fpga driver. The acquired data begin compared with the source (reference). 
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4.1.4 Applet tests 
 The applet was developed and tested along with 
CGI scripts. In the first place, they were tested without 
interfacing Linux Device Driver. The scripts were 
configured to read and write ordinary files (including the 
readout data). Once the applet’s CGI interface and CGI 
scripts were proved to work correctly, an OFFLINE mode 
was introduced in the applet. In OFFLINE mode the data 
is prevented from being sent with CGI scripts to server 
(on the lowest possible level of applets’ architecture). 
The parameters are written to variables and read from 
variables, the measurement data is generated. 
This enabled easy development of the applet in Eclipse 
Development Environment. Before being tested as a part 
of entire system, the applet was run with the driver which 
does not interface hardware. Once interfacing hardware, the applet with all its functionalities 
could be tested. It also allowed further tests of other system components, .i.e FPGA logic 
(Figure 82  presents trigger tests). 

4.1.5 SCPI server tests 
 Tests of SCPI server were done in the similar way as the tests of applet. In the first 
place, information about the hardware operations to-be-made was printed, secondly, a “fake 
driver” (which does not interface hardware) was used, lastly SCPI server was connected 
to the hardware. For the testing purpose a local interface for SCPI Server was developed. 
It was done to be able to exclude the possibility that error is caused due to wrong 
implementation of socket protocol. Finally, tests of socket server and all other components, 
using telnet application as client, were conducted. 
 SCPI Server was tested with Matlab application[52] . Matlab uses TCPIP object 
to connect with remote instruments via TCPIP protocol. “fwrite()” function is used to send 
messages and “fread()” function is used to receive responses. Special m-files were created 
to simplify communication between Matlab and UMSWI. 
SCPIopen()        – opens connection with UMSWI, 
SCPIidentify(t)       – identifies device, 
SCPImeasureTest(t)       – performs example measurement 
SCPImeasureAUTO(t, sample_number, chan)  – performs measurement allowing  
            to choose sample time and channe, 
SCPIclose(t)        – closes connection. 
 
Figure 83  presents measurement of the same waveform using Java Applet and Matlab.  

 
Figure 83 Matlab test of SCPI Server 

Figure 82  Trigger tests  
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4.2 Final tests 
 
 Tests were conducted in ELPHA/PERG laboratory. The aims of final tests included: 

• verification of measurement accuracy, 
• specification of UMSWI’s parameters and features, 
• observation of system’s behavior in boundary and beyond-boundary conditions. 

4.2.1 Test set-up 
 The parameters of devices needed to conduct tests were determined by UMSWI’s 
theoretical parameters and practical methods of its verification. 
 
Frequency 
Since the sampling rate of UMSWI’s Analogue-to-Digital Converters is 100MHz, the highest 
frequency of an analogue signal which, theoretically, can be reconstructed from samples 
(according to Nyquist-Shannon sampling theorem) is 50MHz. Therefore, theoretically, 
the range of digital oscilloscope used for reference measurement should be at least 50Mhz 
and the generator should produce signals in the rage 50MHz-0Hz. However, in practice, 
the frequency value for which an oscilloscope is considered accurate is significantly smaller 
than theoretical value and is called “frequency range” (Appendix: 4 ). It is indicated by 
the frequency at which measured signal is attenuated by 3dB. Since preliminary tests 
showed that frequency range falls between 15-20MHz, 20MHz functional generation was 
considered sufficient. On the other hand, to receive quality reference measurement, it is 
recommended that the reference measurement device is significantly more precise than 
the device under test (DUT). Therefore the reference oscilloscope frequency range should be 
100MHz or more. 
 
Voltage 
The resolution of UMSWI’s ADCs is 1V/1024bits ~= 1mV, therefore the vertical sensitivity 
of 1mV/div should be sufficient to verified the amplitude of the smallest signal that could be 
detected by UMSWI. Devices which were used to conduct test measurements are listed 
in Table 12 .  The test setup-up is presented in Figure 84 . 
 

Name Model Parameters Function 

Digital Phosphor 
Oscilloscope 

Tektronix 
TDS 3054B 

 
Range: 500MHz 
Sampling: 5GS/s 

Vertical sensitivity: 1mV/div 
 

Provided reference 
measurement 

Function generator 1 TG120 20MHz 
 

Max freq: 20MHz 
 

Input signal 

Function generator 2 MXG-9810A 
 

Max freq: 7MHz 
 

Input signal  

Table 12 Devices used during tests 
 



 Universal Measurement System with Web Interface 
 

Maciej Lipiński  86 

 
Figure 84 Test set-up 

 
 The measurements were taken on the reference oscilloscope using “measure” function. 
On ARMsocpe, measuring was performed using “ticks” to receive time of one period 
and signal’s amplitude. It can be assumed that readout error of a period (or voltage) 
on AMRscope is approximately one pixel. The screen is 500-pixel wide (and high), 
and was always fitted to show less then 2 periods(or less then 2 amplitudes). 
Therefore, the readout error can be estimated as: 

xx errorerrorerror 21 ≤≤        (Eq.  1) 
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is the error when period (or amplitude) is equal to screen width (height), and 
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is an error when two periods (or amplitudes) are equal to screen width (or height). Therefore: 
 

4.02.0 ≤≤ error  
 
All the Matlab scripts used to present measurement results are included in the attached CD. 

4.2.2 Vertical axis measurements 
 Initial measurements of amplitude accuracy were taken within moderate frequency 
and voltage range to avoid errors of low- and high-frequencies. Two measurement series 
were taken. First measurement included constant frequency and various amplitude values 
(from 100mV to 1V with 100mV intervals). Second measurement included constant 
amplitude value and various frequencies (from 1Hz to 1MHz with logarithmic increment). 
Results of the initial measurements of amplitude accuracy are presented in Figure 85  
in charts 1 & 2. Charts 5  & 6 present the measurement error. It is quite apparent that 
the error is constant. Therefore, it was decided to introduce scaling factor. A simulated effect 
of scaling factor on the amplitude accuracy is presented in charts 3 & 4, and the decreased 
accuracy error can be seen on charts 5 & 6. The scaling factor was calculated as an average 
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of ratios between reference amplitudes and measured amplitudes (scaling_factor = 1.0946). 
Green lines in charts 3, 4, 5 & 6 show results of the amplitude accuracy measurements 
conducted with scaling factor applied. The results prove that introducing scaling factor was 
a good decision, the relative error (in per cent) dropped from 8.62% to 0.69% which is close 
to measurement readout error. The standard deviation of the amplitude is small and equals 
0.44 . 
 

 
Figure 85 First amplitude accuracy test (final_test_1.m) 

 
 Once it was proven that amplitude accuracy is stable for reasonable frequencies, 
a measurement was conducted to verify the range of amplitude accuracy. The measurement 
focused on high frequencies. The results are presented in Figure 86.  As described 
in Appendix A: 4 , -3dB attenuation determines the frequency range of a device. The results 
show that the actual frequency range is approximately 12MHz. The attenuation is flat until 
1MHz and almost drops below -3dB for 10MHz. Therefore, it seemed reasonable to state 
that the frequency range of ARMscope is 10MHz, while the actual frequency range is slightly 
higher and reaches 12MHz. The results clearly show that there is no point in conducting 
measurements for frequencies higher than 20Mhz.  

 
Figure 86 Amplitude attenuation for high frequencies (final_test_2.m) 
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 Figure 87  presents attenuation of various amplitude values for frequency 10MHz 
and the relative error (in per cent) of amplitude accuracy at such frequency. The attenuation 
does not go beyond -3 dB which means that the proposed frequency range of 10MHz seems 
to be the good choice. 

 
Figure 87 Amplitude attenuation at 10Mhz for various amplitude values (final_test_3.m) 

 
 Figure 88 presents offset error for 10KHz square signal. Offset accuracy indicates how 
well the device handles low-frequency issues. The average error of 2.62% shows that 
this device is not perfect for low frequencies. 
 

 
Figure 88 Offset error 

 
 Although the resolution of ADCs is ~1mV (1V/1025 bits), due to the noise, the minimal 
amplitude which can be detected and measured by ARMscope was observed to be 5mV. 
Figure 89 and Figure 90  present example test screen shots.  
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Figure 89 Minimal input voltage test at 10 Hz Figure 90 Minimal input voltage 

test at 10 kHz 

4.2.3 Horizontal axis measurements 
 Relative error of signal frequency and period are presented in Figure 91. 
The measurements show that frequency error stable in the frequency range:100Hz-10MHz. 
The error is on the level of measurement error: 0.2% - 0.4%. This is a big error if compared 
with data sheets of commercial digital oscilloscopes. However the error is determined by 
the readout error and the error of reference measurement. It is very probable that the actual 
frequency error is much lower. 

 
Figure 91 Signal frequency and period relative error(final_test_4.m) 

 
The results prove the upper limit of UMSWI’s accurate measurement (established in 4.2.2) 
and sets limit for low frequency measurement to 100Hz. However, the low frequency 
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limitation can be questionable, since the instability of reference oscilloscope for 10Hz 
measurement is approximately 1-2%. 
 Figure 92 presents measurement of rising time. Rising time is described in 
Appendix A: 4.  

 
Figure 92 Rising time measurement (final_test_5.m) 

4.2.4 Frequency domain 
 Performance of UMSWI spectrum analyzer in terms of frequency measurement was 
tested by reading frequency of the main harmonic displayed by the UMSWI’s spectrum 
analyzer and frequency measurement form reference oscilloscope. Since the UMSWI 
spectrum analyzer is not suitable for accurate reading of frequency, this test was only 
to prove rough accuracy of the FFT algorithm and scale display. Table 13  and Figure 93  
present measurement results. It is clear that FFT algorithm works correctly in terms 
of frequency. 
 

Sine waveform Square waveform 
Reference 

frequency [Hz] 
Spectrum analyzer 

reading [Hz] 
Reference 

frequency [Hz] 
Spectrum analyzer 

reading [Hz] 
10100 10000 10020 10000 

109000 110000 107000 107000 

1055000 1050000 1040000 1040000 

5200000 5200000 2500000 2500000 

7450000 7500000 5060000 5100000 

11300000 10125000 7500000 75000000 

12500000 12500000 10900000 11000000 

15000000 15000000 12500000 12500000 

17500000 17500000 15000000 15000000 

20000000 20500000 17500000 17500000 

21200000 21000000 

 

20000000 20000000 
Table 13 Test of Spectrum analyzer 
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Figure 93 Spectrum analyzer test (final_test_6.m) 

 
 The performance of UMSWI’s spectrum analyzer in terms spectrum’s amplitude value 
(in mV and dB) was tested with the help of Matlab and using ability to perform measurement 
with UMSWI from Matlab. To connect from Matlab to UMSWI SCPI Server and perform 
measurements, scripts provided on UMSWI website were used. The measurement 
connection with UMSWI was starte with SCPIopen.m. Another script (SCPImeasure.m) was 
used to retrieve data with appropriate parameters. Matlab connection with SCPI Server 
is closed using another script: SCPIclose.m. 
Spectrum analysis of the same signal were done using UMSWI Java Applet (Figure 95 ) 
and Matlab scripts (Figure 94 ), the results compared. This analysis proved that SCPI Server 
works correctly.  

 
Figure 94 Frequency analysis done with Matlab script (myFFTplot_1.m) 
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Figure 95 Frequency analysis conducted with UMSWI Spectrum Analyzer 

4.2.5 Boundary conditions tests 

4.2.5.1 Hardware-wise 
 Waveforms captured at bandwidth frequency and beyond bandwidth frequency 
are presented in Figure 96. The sine wave is of reasonable quality at 10MHz. Since, 
there are only 5 samples per division at 20MHz, the sine signal is more similar to triangle. 
 

 
Figure 96 Sine and square signal measurement at 10 MHz and 20 MHz 
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 Because of a hardware filter at 30MHz, the square wave 
measured at 10MHz does not have square shape. It can be 
clearly seen form the spectrum that the second, third and other 
harmonics were cut off by the hardware filter causing signal 
deformation.   
 When the input signal amplitude exceeds 1V, or the 
offset causes the signal to go beyond +500mV or – 500mV 
(if scaling factor applied, the values may be different), the 
measured signal is cut off. Exceeding the input voltage range is 
not recommended due to possible hardware damage. Figure 
97 presents measurement of input signal with 1.2V amplitude. 
The signal is obviously cut off. 
 

4.2.5.2 Software-wise 
 During tests in the ELPHA/PERG laboratory the UMSWI was used continuously for 
6 hours without necessity of hardware reboot or software reset. The time of measurement 
taken using Applet application depends on the number of samples. In case of maximum 
memory usage (128 K words), it reaches average of 5 seconds. When the number 
of samples equals screen resolution (500px), the measurement time drops to less than 1s, 
the refresh rate in auto mode equals 0.85 times / s.  

4.2.6 UMSWI parameters  
 

Parameter name Value 
Bandwidth 10 MHz 
Memory Depth 128K points (Single and Dual Channel) 
Channels Dual Channels + External Trigger 
Sample Rate 100MS/s 
Rising Time 25ns 
Time Base Range 20ns/div to 200ms/div 
Trigger models Edge, Auto, Manual 
Trigger source CH1, CH2, Ext, Manual 
Vertical Sensitivity 10mV to 1V 
Vertical Resolution 10 bits 
Dynamic Range 46 dB 
Input Voltage 1V 
Input coupling DC 
Measurement time of 128K samples 5s 
Auto mode screen refresh when sample number 
equals screen resolution 

0.85 times/s 

Time base accuracy 4000 ppm 
DC Vertical Accuracy  ± 2.6% 

Table 14 UMSWI parameters 

 

Figure 97  Input signal 
exceeding voltage 
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5. System Applications 

5.1 European Organization for Nuclear Research (CER N) 
 
 Universal Measurement System with Web Interface is currently used at European 
Organization for Nuclear Research (CERN)[53] .  
 UMSWI was used at Proton Synchrotron (PS) to observe proton bunches. PS is 
a 28 GeV accelerator used as an injector for other CERN’s facilities: the Super Proton 
Synchrotorn (SPS) and the Large Hadron Collider (LHC). One of the PS accelerator 
parameters is harmonic number (h) – the number of proton packages being accelerated. 
Bunches (groups) of protons are transported in buckets. The idea is explained in Figure 98.  
The harmonic number of CERN’s Proton Synchrotron ranges from 1 to 23. The frequency at 
which protons circulate in PS (frequency of turn) varies from 430kHz to 470kHz. The change 
of frequency from 430kHz to 470kHz increases protons’ energy from 800MeV to 26GeV.  
 

 

 
Figure 98 Acceleration of particles with AC voltage radio frequency RF [54].  

 
Figure 99  presents measurement of a beam of protons filling 4 out of 7 buckets (h=7). 
In all the measurements, channel 1 is connected to measurement transformer, channel 2 
is connected to Wall Current Monitor.  
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Figure 99 Four bunches of protons, h=7 

 
Figure 100  presents proton beam with harmonic number of 8. All buckets are filled with 
protons. The energy of each bunch is slightly different, therefore periodic amplitude variation 
can be noticed every each picks.  
 A phenomena called bunch splitting takes place during harmonic number change from 
7 to 21. The division of bunches during bunch splitting is presented in Figure 101.   
 

  
Figure 100 Eight protons in bucket, h=8 Figure 101 Bunch splitting 
 
Figure 102 presents a situation when only there is only one bucket (h=1) while in Figure 103  
the harmonic number is 16 and all the buckets are filled. Figure 104  presents two buckets 
filled with protons of different energy (h=4). 
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Figure 102 Single bunch, h=1 Figure 103 All 16 buckets full 

 

  
Figure 104 Two buckets filled with bunches of varied proton number 

 

5.2 Potential applications 
 
 Potential applications of the outcome of this Master Thesis can be divided into three 
categories:  

• Application of the system as is (without hardware or software modifications) , 
• Application of the system with modifications of software and/or configuration 

(content of MMC/SD card), 
• Application of the control system (measurement platform with web and SCPI 

interfaces) on new or modified hardware platform.  
 Without hardware modifications, the UMSWI can be used as a very cheap 
(~150 EURO) oscilloscope with remote screen and measurement interface (i.e. to observe 
protons in Photon Synchrotron). It allows diagnostic measurements in accelerator tunnels 
where data acquisition needs to be done remotely due to possible radiation danger. 
However, it can be used to perform measurement in any dangerous places where remote 
data acquisition is required, i.e. areas where explosion danger is high (mines, factories),  
high health-risk zones (chemistry) or radioactive areas (power plants).  
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 Thanks to the design consisting of microprocessor (running Embedded Linux) 
connected with FPGA, the same hardware with modified configuration files and applet 
(the content of MMC/SD card) can be used to perform the following measurements tasks: 
 

• Advanced digital oscilloscope – appropriate functions need to be implemented 
in Java Applet, 

• real time spectrum analyzer - implementing FFT algorithm in FPGA, 
• software defined radio,  
• 2 channels corelator,  
• frequency counter, 
• any device which use ADCs to measure input.  

The UMSWI is also suitable for monitoring. The possibility of data processing (in FPGA 
or microprocessor) enables UMSWI to be configured for self-decision making (i.e. deciding 
whether to set up an alarm based on measured values). It is also possible to concurrently 
process (in FPGA) data received from ADCs and store the outcome in memory. It can be 
used to implement in FPGA algorithms for estimation of intensity or trajectory of particles 
beam in accelerators. The advantage of UMSWI over ordinary digital oscilloscopes in is 
the fact that calculations (i.e. trajectory, intensity) can be done on UMSWI in real time. 
In oscilloscopes, lag time disables real time calculations. Modification of old and addition 
of new FGPA algorithms is very easy – an appropriate file on MMC/SD card needs to be 
replaced.     
 Since the hardware used to build UMSWI is modular and because the control system 
of UMSWI was designed to be as much platform independent as possible, there are many 
possible applications of UMSWI which involve hardware modification. In such applications, 
UMSWI is understood as a measurement platform with web and SCPI interface which 
enables ready-made mechanism for implementation of control GUI. The recorder module 
of UMSWI can be replaced by any other measurement board, thus a new measurement 
device with web interface is created. The recorder module can be replaced by board with 
radio antenna, water parameters measurement device, weather station, etc. Additionally, 
UMSWI can be used to create a distributed system of measurement devices.  
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6. Conclusions 
 
 Universal Measurement System with Web Interface (Figure 105 ) was created for 
diagnostic purposes in High Energy Physics having in mind current technology trends and 
market requirements to enable its wild usage in other places than accelerator tunnels as well. 
UMSWI required design and development of flexible, well-thought and easily extensible 
system. The objective was achieved. The system fulfilled all the initial requirements and after 
being successfully tested by the author in laboratory conditions, it was sent to European 
Organization for Nuclear Research (CERN) for further tests and operation. 
 The essence and main advantage of UMSWI is its build-in web interface and web 
server which make the device autonomous, plug & play and very convenient remotely 
controlled measurement system. Unlike most of the measurement devices, UMSWI does 
not require dedicated and separate server to be controlled via Ethernet. There is also 
no need for special client software. Everything is included in the device and the client needs 
no more than a web browser to operate it.   
 The system performance could be further increased introducing optimization in terms 
of data acquisition speed and graphic generation. However, such optimisation would 
introduce visible improvement only when handling large numbers of samples close 
to memory limits (2 x 128K samples).  
 Development of Universal Measurement System with Web Interface resulted 
in creating a control system which is vertically and horizontally flexible. Vertical flexibility 
is recognized by the fact that the UMSWI control system can be ported to different platforms 
(various microprocessors) with minor effort (Linux Device Driver porting). Horizontal flexibility 
means that the existing control system can be easily extended to perform other 
measurements as well as changed to control different hardware. Thus, the “universal” 
in device’s name is justified. Simplicity of extensibility was proved during the development, 
when the oscilloscope interface was extended by adding spectrum analyzer.  
 Moreover, the design and solutions used in control system of UMSWI can be a good 
basis for developing remote control of any system which needs to be controlled over 
the Ethernet. The core of the system can be reused and adapted easily. The software 
architecture is platform independent and requires very little resources. 
 Production of a measurement system based on similar hardware and UMSWI’s control 
system is planed by Creotech Ltd.  
 
 

 
Figure 105 Universal Measurement System with Web Interface 
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Appendix A – Additional information 

1. UMSWI hardware analysis 

1.1 Data acquisition hardware architecture  
 
 Data acquisition and readout is managed by the FPGA. Figure 106 presents a general 
overview of acquisition architecture and data flow. The data acquired from ADCs can be read 
by FPGA or written directly to SSRAM. It can be also written to SSRAM and read by FPGA 
simultaneously. After being processed in FPGA, the data can be send to microprocessor 
or/and written to SSRAM. The access of microprocessor to the data stored in SSRAM 
is possible only indirectly through FPGA. 
  

 
Figure 106 Acquisition hardware architecture 

 
An important issue, which can be noticed in Figure 106  is the fact that there are different 
sources of clock signal. CLK  defines clock signal generated by oscillator which is connected 
to ADC and FPGA This is a low-jitter clock signal which is required by ADCs. A1-CLK  stands 
for adjustable clock provided by ARM This is an independent clock signal for ARM’s data 
readout. This clock can be derived by dividing the main ARM clock (180MHz) by the power of 
two. A2-CLK  stands for adjustable clock generated by FPGA which can be virtually anything, 
in particular can be equal to CLK  or A1-CLK . Therefore, the following clock domains: 

• Clock domain imposed by 100MHz clock connected to ADCs - used during data 
acquisition, 

• Clock domain imposed by ARM clock (90MHz) - used during data readout 
The clock of SSRAM needs to be switched between 100MHz and 90 MHz appropriately. Two 
clock domains disable direct reading of data from ADCs to ARM. It is necessary to store 
the data first with the ADC domain frequency (or division) in SSRAM or FPGA memory. After 
desired number of data samples have been saved, the data can be read by microprocessor 
in it’s clock domain. In theory, during either operation (writing to SSRAM or readout) and 
in between, the data can be processed in FPGA (i.e. FFT). Processing data in FPGA during 
acquisition is the least efficient if we want to store the outcome in SSRAM. This is because, 
when writing data to SSRAM without processing, data can be written to SSRAM directly from 
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ADCs, without going through FPGA. This results in the minimal delay, data can be written 
with 100MHz. If the data is processed in FPGA, one data bus needs to be switched between 
reading data from ADC to FPGA, and writing data from FPGA to SSRAM. It results in two 
times slower process and much greater delay. Data processing or analysis can be done 
simultaneously with data writing to SSRAM from ADCs. This is used to implement trigger 
by signal level when the signal level is interpreted while writing data to SSRAM. 
 Another issue indicated in Figure 106  is the fact that address bus between ARM 
and FPGA is not as wide as address bus between FPGA and SSRAM. Thus not entire 
SSRAM memory space can be directly accessed from ARM.  

2. Review of available technologies  

2.1 Embedded Operating Systems 
 
 The ARM processor (AT91RM92000) installed on the Single Board Computer module 
is very popular among embedded systems. It is, of course, possible to develop applications 
directly for this processor. However, much better and more popular solution is running 
embedded operating system (OS). Developing applications for embedded system running 
OD does not require extensive, processor-specific knowledge. It is exactly the same 
as on standard PC, just the compilation must be performed for ARM architecture and the 
consideration of limited resources must be taken into account. ARM9 processors are 
so popular for embedded platforms that there are a few operating systems available for this 
processor: 

• Linux  
o Distributions: uLinux, Denx, Embedian, BlueCat, Cadenux  

(open source/proprietary ) 
o “vanilla” kernel + patches (open source) 

• Windows CE (proprietary) 
• Symbian OS (proprietary) 
• Palm OS  (proprietary) 

 
Linux open source distributions: 
uClinux  – it supports many architectures and forms basis of many network routers, security 
camera, DVD or MP3 players. 
Cadenux  – specialized in Linux for no-MMU ARM7 and ARM9 processors. The distribution 
is build around uClinux. 
Denx  – open source distribution in form of Embedded Linux Development Kit (ELDK).  
It provides software development environments for real-time and embedded systems. 
Embedian  – a smaller version of Debian, to be used on embedded systems, it retains good 
features of Debian (i.e. packaging system). 

2.2 Remote Measurement Interfaces 
 
 A clear distinction needs to be done between physical layer and abstract layer remote 
control standards. The former standards define construction and electrical parameters 
as well as communication protocol of physical communication link.  General Purpose 
Interface Bus (GPIB), Recommended Standard 232 (RS-232), Universal Serial Bus (USB), 
VME eXtensions for Instruments (VXI) or Ethernet are means of physically connecting 
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the controller with the measurement instrument. Different abstract layers can be used 
to communicate via this physical connections. 

2.2.1 Physical layer 
Description based on [55] . 
 
General Purpose Interface Bus (GPIB), IEEE-488  – standard developed in 1960s 
by Hewlett Packard to facilitate communication between computers and instruments. 
It provides specification and protocol for the communication. It is a parallel bus which sends 
data in bytes encoded as ASCII characters. It’s maximum data rate is up to 8MB/s, it allows 
up to 15 devices within the range of 20 m. 
 
Serial Communication (RS-232)  – a popular mean of data transfer between a computer 
and peripheral devices (i.e. programmable instrument). It uses a transmitter fro sending data 
one bit at a time via single communication line to a receiver. It is used for data transfers 
when the speed is not crucial or when the distance is long. Unlike GPIB which needs special 
board plugged into the computer to enable communication, most of the PCs are equipped 
with serial port (however, it is less and less common). Its speed is up to 115.2kb/s 
(synchronous: 1Mb/s). Range: 15 m. 
 
Universal Serial Bus (USB)  – increasing popular serial bus standard which enables 
to connect device to a host computer. It is plug and play, enables to connect up to 
127 devices to one host. It enables fast transfers (USB 2.0: 480 Mb/s). 
 
VME eXtenstion for Instruments (VXI)  – base on VME standard (IEEE 1014), consists 
of mainframe chassis with slots holding modular instruments on plug-in boards. It is popular 
in analysis for research/industry control application and data acquisition that require 
substantial number of channels (hundreds of thousands). 
 
LAN eXtensions for Instrumentation (LXI)  – standard for an instrumentation platform 
based on Ethernet technology. It is meant to be modular, flexible, and well-suited for small- 
and medium-size systems. 
 
PCI eXtensions for Instrumentations (PXI)  – standard based on PCI similarly as LXI 
and VXI. 
 
Ethernet  – frame-based standard in computer networking technologies for local area 
networks (LANs).  
 

2.2.2 Abstract layer 
Virtual Instrumentation Software Architecture (VISA ) – is an API for communication with 
measurement instruments from PC. It is an industry standard implement in products of such 
companies as Agilent Technologies and National Instruments. The standard includes 
communication over physical links such as GPIB and VXI. VISA cannot be used directly 
to control instrument over LAN, however, it is used by Ethernet-enabled standards, 
such as VXI.  
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VXI-11 is an instrument protocol specification which defines a network protocol for controller-
device communication over a TCP/IP network. In principle, it allows an application (client) 
to call procedures in the remote measurement instrument (server) as if they were local. 
Remote procedures are identified by the client using a unique number. Each message, along 
with the argument, encodes this number. According to [56]  VXI-11 Devices can be 
programmed in two ways: 

• Calling VXI-11 compliant VISA library, preferably Windows users, such libraries 
are available from National Instruments and Agilent 

• Installing the VXI-11’s Remote Procedure Call Library (RPCL) and writing programs 
with RPC calls,preferably Unix-like OS users 

 
Standard Instrument Control Library (SICL)  can be used to control measurement 
instruments over GPIB, VXI, RS-232, LAN and other physical links. It is a communication 
library that can be used by application written in C or C++ on various operation systems. 
Examples of C programs that use SICL, which can be found in [57] , show that SICL is mean 
of communicating with measurement instruments using Standard Commands 
for Programmable Instruments (SCPI). 
 
Interchangeable Virtual Instruments (IVI)  defines instrument drivers standard. It builds 
on the VXIplug&play specifications. However, it additionally incorporates new features that 
address such issues as performance, development flexibility, instrument interchangeability. 
It can communicate with instruments across GPIB, VXI, PXI, Serial, Ethernet and USB.  
 
Standard Commands for Programmable Instruments (SCP I) defines syntax and structure 
for programmable measurement and test instruments. It does not define underlying physical 
or software layer. It happens that instrument control interfaces are simple wrappers of SCPI 
commands, i.e. SICL. 

2.3 Web technologies to control hardware 
 
 In order to control measurement instrument, a web server needs to interface hardware 
(in case of UMSWI, via Linux Device Driver). Depending on the web server’s capabilities 
and the technology chosen there are few possibilities. If the web server embeds script 
interpreter (ex. PHP), driver can be accessed directly by opening its file representation. 
Otherwise, Common Gate Interface (CGI) can be used to call script (written in any language, 
i.e. shell script, perl script) which performs required action.  
 
Common Gate Interface (CGI)  
CGI enables to communicate with programs running on the server from the webpage. 
With CGI, the Web server can call up a program and pass user-specific data to the program 
The program then processes that data and the server passes the program's response back 
to the Web browser. Most servers expect CGI scripts to reside in special directories 
(i.e. cgi-bin) and have special extensions (.cgi). When a user opens an URL associated with 
CGI script, the client sends a request to the server asking  for the file. When the server 
recognizes that the address being requested is a CGI program, the server does not return  
the file content verbatim. Instead, the server tries to execute the script. The process 
is explained in Figure 107 . It is worth mentioning that: 
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 “CGI has the advantage of being a more-or-less platform-independent way 
to produce dynamic web content. Other well-known technologies for creating 
web applications, such as ASP and server-side JavaScript, are proprietary 
solutions that work only with certain web servers” [58] 

 

 
Figure 107 CGI process explanation 

 
PHP 
According to [4] , “PHP is the most widely used programming language on the Web, with over 
40 percent of all web applications written in PHP”. It is a server-side scripting language 
designed to crate dynamic web content. PHP parser needs to be added to web server 
to generate HTML pages based on PHP. PHP is very flexible, many libraries are available 
which provide ready-made solutions. It is also well suited for Web Graphic generation. 
However, in interfacing hardware, the most important is the fact that PHP provides functions 
to access, read and write server-side files. It means that hardware can be controlled directly 
form PHP scripts by accessing files in /proc or /dev. PHP provides also functions to execute 
server-side applications or shell commands (i.e. exec(), system()) which can also be used 
to access and control hardware. Since PHP is a server-side scripting language, it is run 
on server and the workload of user interfacing, graphic generation or data processing is 
on server side. 
 
Java Servlet 
According to [58] , “servlets provide an elegant, efficient alternative” to CGI and “an easy-to-
connect-to, Java-based agent on the server” for Java applets. A servlet is a Java class which 
can be loaded dynamically to expand server’s functionality. It is run on the server inside Java 
Virtual Machine (JVM), therefore is portable and safe. Java Servlets do not require Java 
support in the web browser but they do need such support on server side. Java Servlet 
can control hardware by reading/writing file (i.e. in /proc file system) or using special library 
(i.e. JavaComm) as described in the article [59] . 
 
Active Server Pages (ASP)  
Microsoft produced technology for generating dynamic web content. It enables HTML pages 
to contain embedded code (usually VBScript or Jscript). ASP uses COM components which 
are necessary for ASP’s correct performance. ASP support for other servers than Microsoft 
Internet Information Server Version 3.0 is commercial. Therefore, ASP can be place among 
not-very-platform-independent. 
 
JavaServer Pages (JSP) 
Unlike ASP, JSP is an open standard which is implemented by many vendors across all 
platforms. JSP’s syntax is similar to ASP’s except that the scripting language is Java. 
It is closely tied with Java servlets. 
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2.4 Web Graphic User Interfaces 
 
 The graphic User interface can be generated on the server using Java Servlet 
technology or creating graphics using PHP. It can be also done by generating a graphic 
image from  the data (on the device) and updating the image on the website. The advantage 
of such a solution is the fact that the user does not need to have special applications 
installed or browser’s plug-ins enabled. However, there are at least three disadvantages: 

• appropriate technology has to be ported (cross compiled) for ARM microprocessor,  
• the work connected with data computation, interaction with user, etc is done 

on a limited-resources device (ARM microprocessor), 
• all the user’s requests are answered by server directly, the exchange of information 

between client and server is constant and heavy. 
 Another solution is to move most of the work to the client. Any computer used by 
the client is far more powerful than the ARM microprocessor, so the limitations are less strict. 
Moving the work to the client’s side also means that the web server can be very simple. 
JavaScript or Java Applet enable graphic generation and user interaction handling 
on the client’s side. The drawback of such a solution is the fact that the user needs to have 
web browser configured appropriately in case of Java Script. To use Java Applet, a Java 
Virtual Machine needs to be installed. 

2.5 Web servers 
 
 The choice between generating GUI on the server or on the client is directly connected 
with the choice of the web server. The former solution needs a good web server 
with necessary tools (ex, PHP, Perl, Java, etc) the latter needs simple web server. 
Among many solutions tested were three worth mentioning: 

• Apache Web Server  which was successfully cross-compiled for the ARM. Apache 
is a widely used server, probably the first choice when developing web applications 
on standard computers for websites accessed by man users simultaneously,  

• KLone Web Server  is a peculiar web server developed especially for embedded 
systems. It allows to create dynamic pages by embedding C language in HTML. 
What is even more interesting, the KLone server along with developed website 
is compiled to a single executable. Such a solution seems quite appealing, however 
it has few drawbacks: 
o development can become troublesome because any change needs recompilation 

of the server, especially that the web server needs to be cross-compiled for ARM, 
o Bugs in the C code embedded in HTML can cause the entire server to crash. 

• Web Server provided by Busybox  - a very small web server with basic 
functionalities (i.e. CGI). 

3. Descriptions of chosen solutions 

3.1 General architecture of embedded Linux 
 
 General architecture of embedded Linux system is the same as architecture 
of any Linux system. At this level of abstraction all Linux system are equal. Figure 108 
presents all the components of generic Linux system architecture. Kernel is the core 
component of the operating system.  
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“Its purpose is to manage the hardware in a coherent manner while providing 
familiar high-level abstractions to user-level software (such as the POSIX APIs 
and the other de facto, industry-standard APIs against which applications 
are generally written)”[27]  

 
Thanks to such architecture, applications which use the APIs provided by a kernel 
are portable among the various architecture. Within Linux kernel, the low-level interfaces 
are the part of the kernel which is platform-dependant and needs to be ported to specific 
architecture. Low-level services typically handle CPU-specific operations, Basic interfaces 
to devices and architecture-specific memory operations. Low-level hardware-dependant 
interfaces are managed and controlled by hardware-independent Application Programming 
Interfaces (APIs) of High-level abstractions. 
 

“Above the low-level services provided by the kernel, higher-level components 
provide the abstractions common to all Unix systems, including processes, files, 
sockets, and signals. Since the low-level APIs provided by the kernel are 
common among different architectures, the code implementing the higher-level 
abstractions is almost constant, regardless of the underlying architecture”.[27]  

 
File systems and Network protocols are good examples of components used by the kernel 
to understand and interact with coming from or going to certain devices structured data. 
 

 
Figure 108 Architecture of a generic Linux system [27]  

 
At least one properly structured filesystem is needed for kernel’s proper operations – root 
filesystem. Kernel loads the first program to run on the system from root filesystem. It can be 
either loaded during the system on start-up into RAM and operated from there, or stored and 
operated from hardware storage device. 
 

“It [kernel] also normally relies upon this filesystem [root filesystem] for 
certain further operations, such as loading modules and providing each 
process with a working directory (though these activities might take place 
on other filesystems mounted within the tree that begins with the root 
filesystem).” [27] 
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Very often regular application do not interface kernel directly because kernel’s services 
are unfit to be used directly by applications. Therefore, libraries and system daemons 
are provided to interact with kernel on behalf of applications. One of the main libraries used 
in Embedded Linux Systems (instead of GNU C library used in “normal” systems, called 
glibc) is uClibc library. Błąd! Nie moŜna odnaleźć źródła odwołania. presents comparison 
between glibc and uClibc. It is apparent that usage of uClibc allows to save very precious in 
embedded system memory space. 
 

 
Figure 109 Benefits of using uClibc library [29]  

 
In most of Embedded Linux Systems, the daemons and Unix utilities (most Unix commands) 
are provided by a toolset called BusyBox. It is a very small-size application, single 
executable, which provides great functionality.  
 

“BusyBox even includes a DHCP client and server (udhcpc and udhcpd), 
package managers (dpkg and rpm), a vi implementation with most of its 
features, and last but not least, a web server. This server should satisfy 
the typical needs of many embedded systems, as it supports HTTP 
authentication, CGI scripts, and external scripts (such as PHP). Configuring 
support for this server with all its features adds only 9 KB to BusyBox 1.5.0” [27] 

 

3.2 Model-View-Controller (MVC) design pattern 
 

“The Model-View-Controller (MVC) paradigm is a way to partition your 
user interface so it's easier to write and maintain. The idea is that you start with 
a model—a set of classes representing the data you're working with. Next, you 
construct various views of the data—classes that display the data on the screen. 
Finally, you create a controller object that accepts user input and updates 
the model or view.” [60] 
 

When an application uses the MVC architecture, it employs three elements to help it bridge 
the data and visual models that it uses. These three elements must be created and managed 
by the program ( Figure 110  ): 

• View: visible GUI which is seen by the user, 
• Model: abstraction used in the program logic, represents state and nature of visual 

objects presented on the screen, 
• Controller: enables communication between the model and view components. 

It updates the model according to the changes resulting from the interaction with 
the user. 
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Figure 110 MVC architecture [60] 

3.3 Observer-Observable paradigm 
 
 The Observer-Observable ([60, 61]) pattern consists of Observer listener interface 
and Observable base class which are provided by java.util package. An object (i.e. view) 
implementing observer interface registers itself as an observer of the object (i.e. model) 
which is an observable. Each time the model (observable) changes, all the registers 
observers (there can be many views) are updated.  
 According to [61] , Observer-Observable pattern can be used in relation between 
the following parts of the application: 

• view and controller - the changes in the view cause response in the controller, 
• model and view – all the registered views are notified about model’s state change. 

The same book mentions different view implementations: 
• “model push” vs. “view pull” – the model sends updates to the registered views 

or views get information from the model, when it’s needed, 
• Multiple view targets – more than one view can be registered to the model, thus 

the same data can be represented in many ways, 
• “Look but don’t touch” views – when the view does not provide interaction with 

the user. 
 

3.4 Standard Commands for Programmable Instruments (SCPI) 
 
 SCPI defines a set of commands to control programmable test and measurement 
devices in instrumentation systems. It specifies command structure and syntax, it does not 
define underlying hardware and software. Vertical and horizontal programming consistency 
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is promoted by the standard. Message consistency between instruments of the same class 
(vertical) and between instruments with the same functional capabilities (horizontal) 
are defined. An example of vertical consistency is using the same command for reading DC 
voltage from several different multimeters. Horizontal consistency is using the same 
command to control similar functions across instrument classes. SCPI defines specific 
command sets for a given measurement functions (i.e. frequency or voltage), 
Thus, frequency measurement can be made in the same way in two oscilloscopes made 
by different manufacturers. It is also possible for a SCPI counter to make a frequency 
measurement using the same commands as an oscilloscope.  
 SCPI commands consist of set commands and query commands (simply called 
commands and queries). Commands change instrument settings or perform a specific action. 
Queries cause the instrument to return data or information about its status. Most commands 
have both forms. The query form is the same as the set form except that it ends with 
a question mark. A command message is a command or query name, followed by any 
information the instrument needs to execute the command or query. It consists of five 
element types defined in Table 15  and presented in Figure 111  [62]  
 

Symbol Meaning 
<Header> Command name. Command is a query if the header ends with a question  

mark. It may begin with a colon (:) character.  
<Mnemonic> A header sub function. Most of headers consist of many Mnemonics 

separated by colon (:) 
<Argument> A quantity, quality, restriction, or limit associated with the header. Some 

command have no argument while others have multiple arguments. 
Arguments are separated from the header by a <Space>. Multiple 
arguments are separated from one another by <Comma>. 

<Comma> A single comma between arguments of multiple-argument commands 
<Space> A white space character between command header and argument.  

Table 15. Command message elements 

 
Figure 111. Command message elements 

 
SCPI requirements concerning mnemonics’ names: 

• Each mnemonic has both a long and a short form. A SCPI instrument shall  accept 
only  the exact short and the exact long forms, 

• The instrument shall accept both upper and lowercase characters without distinction 
between cases. 

SCPI commands are based on a hierarchical structure created according to the style 
guidelines. The most important of the requirements are listed below: 

1. The lowest node should have the broadest base possible, 
2. Tree should be as shallow as possible, 
3. A complete tree path shall be unique, 
4. In general, parameters should only appear at the leaf nodes of the tree. 

For an instrument a “dictionary” of commands is implemented. 
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4. Parameters of digital oscilloscope 
 
Bandwidth  – frequency range in which the oscilloscope measurement is accurate. 
It is indicated by the frequency at which the displayed signal is attenuated by -3dB (reduces 
to 70.7%). Well-designed oscilloscopes (i.e. Tektronix, Hewlett-Packard) tend to have flat 
bandwidth in entire frequency range. It means that the attenuation of the signal is close 
to 0 even at the specification bandwidth. Often, the specification bandwidth of such 
oscilloscopes is much less than its actual bandwidth.  
 The theoretical bandwidth is based on Nyquist-Shannon sampling theorem which says 
that “a signal can be reconstructed [from samples] exactly if  the signal is band-limited and 
the sampling frequency is greater than twice the signal bandwidth”[63] . It means that 
theoretically, to avoid bandwidth degradation in measured signal, oscilloscope must have 
a sampling rate two times greater than it’s nominal bandwidth. In practice, high performance 
oscilloscopes manage to accommodate sampling rate of 2.5 times bandwidth. However, 
the mainstream oscilloscopes usually oversample the bandwidth by a multiple of 4x. 
 

 
 

Figure 112 Relation between sampling rate and bandwidth [63]  
 
Vertical Resolution  – it is the minimal detectable voltage change, determined by ADC’s 
resolution and the input signal range, 
 
Vertical Sensitivity  – the smallest voltage the oscilloscope can detect (typically, 2mV/Div) 
 
Dynamic Range  – refers to how well the measurement device can detect small signals 
in presence of large signals, it is expressed in decibels (dB) 

Dynamic Range (dB) = 20log(Vmax/Vmin) 
Vmax – maximum voltage being acquired. 
Vmin – minimum resolution that can be seen. 
Rule of thumb: 1 bit of resolution ~=- 6 dB of dynamic range (10-bit instrument’s theoretical 
maximum dynamic range is 60dB 
 
Accuracy -  ability of an instrument to represent the true value of a signal. The achievable 
accuracy of an oscilloscope (any measurement instrument) is limited by the resolution of 
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the ADC. However, the high resolution does not guarantee high accuracy. Factors that 
reduce accuracy mostly occur at high and low frequencies.  
 
Gain accuracy  – accuracy of amplitude measurement, determines how well oscilloscope 
handles high-frequency noise 
 
Offset accuracy  – accuracy of offset in DC coupling mode, determines how well 
oscilloscope handles low-frequency errors 
 
Horizontal axis resolution  – limited by sampling rate. 100MS/sec acquisition rate can 
achieve a time resolution of 1/(100MS/sec) = 10ns. Accuracy of horizontal axis can be 
reduced by low- and high-frequency errors alike vertical axis. However, this errors are 
usually insignificant compared to problems with accuracy of vertical axis.  
 
Time base accuracy  – specifies frequency/period measurement instability, is expressed 
in parts-per-million (ppm) 
 
Rise time  – time needed by the signal to go from a specified low value to a specified high 
value. The low value is usually specified as 10% of set height and the high value is specified 
by 90% of set height. It describes useful frequency range on an oscilloscope. Pulses with rise 
time faster then oscilloscope’s rise time cannot be displayed accurately. 
 
Memory  – in most oscilloscopes sampling rate and memory size are intertwined since they 
want to fill entire (fixed-size) window with the waveform. In some settings configuration it may 
lead to situation where both time and memory are maximized. Since maintaining sampling 
rate is more important, entire memory is used. Usually, sampling rate is sustained as long 
the scope does not run out of memory to fill the display, otherwise sampling rate 
is decreased (bandwidth is therefore memory dependant as well). 
In case of UMSWI, sampling rate is always maintained and, if required, the waveform 
is smaller than screen display.  
 
 
 
 



  

  

Appendix B – FPGA – ARM interface 
Example commands Output/input 

from/to driver 
data format 

Proc_fs R/W address Register 
name 

Variable in FPGA 
 

comment 

Echo 1 > reset 1 reset W 0x…00  ARM_reset asynchronous 

Reg01[1..0] ARM_trig_src[1..0] 0-ARM; 1-ext; 2- 

chan1; 3- chan2 

Reg01[2] ARM_time_en 0-disable; 1-enable 

 Number(decimal) Config R/W 

Reg01[3] ARM_slope 0-rising; 1-falling 

Reg01[4] ARM_ARM 0- idle; 1 - ARM Echo 16 > cmd 

Echo 32 > cmd 

Echo 48 >cmd 

ARM 

Trig 

ARM + Trig 

Number(decimal) cmd R/W 

0x…10 

Reg01[5] ARM_trigger 0- not trigger; 1- 

trigger 

Reg02[0] ARM_DATA_ACQUIRED 0 – not; 1 - yes 1 

2 

3 

Data acquired 

ARMED 

Data acquired and armed 

 state R 0x…20 

Reg02[1] ARM_ARMED 0 – not; 1 – yes 

Reg03 ARM_record_len[15..0] 0x…30 

Reg04 ARM_record_len[18..16] 

 

Reg05 ARM_timer[15..0] 0x…50 

Reg06 ARM_timer[23..16] 

 

Reg07 ARM_delay[15..0] 

Echo 20:0:0 > parameters Len:time:delay parameters R/W 

0x…70 

Reg08 ARM_delay[31..16] 

 

Reg09 ARM_start_RD_addr[15..0]  startAddr startRDaddr R/W 0x…90 

Reg0A ARM_start_RD_addr[18..16] 

Problem with 

reading, 

MASK=0x0FFF 

Reg0B ARM_start_addr_pointer[15..0] 0x…B0 

Reg0C ARM_start_addr_pointer[18..16] 

 

Reg0D ARM_stop_addr_pointer[15..0] 

 StartAddr stopAddr addressPointers R 

0x…D0 

Reg0E ARM_stop_addr_pointer[18..16] 

 

  readSingleData R 

  read2words R 

0x…100  RD_DATA 

WR_DATA 
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  readXwords R/W 

Cat readresult  readresult R 

Test 0 – special states for writing and reading from 

memory 

Ilde->write_ssram->read_ssram->completed(waiting 

for data to be read)  

For this test data outputted by “readresult” is displayed 

differently than normal  

0x01 – writing address to the memory 

0x11 – writing 0x5555 to even and 0xAAAA to odd 

addresses on channel 1 and 0x0000 to channel 2 

0x21 – writing 0x5555 to even and 0xAAAA to odd 

addresses on channel 2 and 0x0000 to channel 1 

0x31 – writing 0x0000 to both channals and all 

addresses 

0xNumber regT[0] ARM_SSRAM_test_0 Test 0 

 

Cat readresult: 

addr ->> chan1: 

chan2 

0x1 ->> 0x2aa: 0x8 

Test 1 – everything works as normal, but instead of 

reading data from ADC, the data is read from FPGA 

(and written to memory), 

For this test data outputted by “readresult” is displayed 

differently than normal  

0x02 – writing address to the memory 

0x12 – writing address to channel 1 and 0x0000 to 

channel 2 

0x22 – writing addresses to channel 2 and 0x0000 to 

channel 1 

0x32 – writing 0x0000 to both channals and all 

addresses 

 

0xNumber regT[1]  ARM_SSRAM_test_1 Test 1 

 

Cat readresult: 

addr ->> chan1: 

chan2 

0x1 ->> 0x2aa: 0x8 

Test 2 – everything works as normal, but instead of 

reading data from ADC, the data is read from FPGA 

(and written to memory) 

For this test data outputted by “readresult” is displayed 

0xNumber 

test R/W 0x…110 

regT[2] ARM_SSRAM_test_1 Test 1 

 

Cat readresult: 

Chan1: chan2 
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normal , can be used with applet 

 

0x04 – writing address to the memory 

0x14 – writing address to channel 1 and 0x0000 to 

channel 2 

0x24 – writing addresses to channel 2 and 0x0000 to 

channel 1 

0x34 – writing 0x0000 to both channals and all 

addresses 

     regT[7..4] ARM_test_kind Depending on the 

test kind 



  

  

Appendix C – Example Manual 
 
Below, Oscilloscope and Spectrum Analyzer Manual is presented. This manual is available 
on the UMSWI’s website and is presented here as an example. The website provides also 
SCPI Manual  (with example scripts in Matlab) and information concerning UMSWI’s 
configuration. The website is included in the CD. It can be also found on author’s homepage 
[47]  
 

1. JAVA APPLET 
The Oscilloscope and Spectrum Analyzer is a Java Applet and you will need Java Virtual 
Machine installed and Java enabled in your browser to have it up and running. For details 
how to successfully run applet in your browser see [64] .The recommended browser 
to operate the oscilloscope applet is Mozilla Firefox  
 

2. ONLINE/OFFLINE 
Applet automatically detects whether it has connection with the server. If something is wrong 
with the connection, it is indicated by red sign Device OFFLINE. If everything is ok, there 
should be Device ONLINE in blue.  
 

• ONLINE - good for you, it means that everything is connected and installed properly, 
just enjoy using. If you want just to test the applet and you don't have any source 
of signal, you can ask it to generate signal:  

 
i. click with right button of the mouse on the screen  
ii. select Enable test data  
iii. choose which waveform you want to see (affects only channel 2)  
iv. use the applet as if there was a signal source connected to the device  

 
• OFFLINE - for tests  
 

i. probably you are using the applet on the author's homepage, this one 
is not connected to any hardware  

ii. if you are using applet located on the ARMputer and it is indicated that 
the applet is OFFLINE, something is wrong :(  

 
3. COMPONENTS OF THE GUI 

When you open the Oscilloscope Web page, you will see Screen and Control Panel. These 
are all you need during normal operation. Control panel enables you to set acquisition 
parameters, start/stop acquisition, adjust the view of the results and decide what should be 
displayed on the screen. Screen presents results of measurement acquired with 
the parameters you wanted. When you start the applet, the screen is empty. It will stay empty 
even after the acquisition if you do not enable any of the channels. Except of screen and 
control panel, an auxiliary window can be opened by clicking the screen with right button 
of the mouse. Auxiliary Panel provides functions which are rarely, i.e. it enables you to see 
raw data. Raw data is are the voltage values which were received from the hardware, scaled 
by the factor indicated. Spectrum raw data, is the outcome of Fast Fourier Transform 
calculation performed on the raw data. 
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Figure 113  Oscilloscope & Spectrum Analyzer GUI 

 
4. SCREEN 

The screen has multiple usage. In initial state it displays nothing but the grid in oscilloscope-
like window. What is currently displayed on the screen depends on the control panel settings, 
in general the screen can show: 
 

• Nothing – when none of the channels is enabled 
• Input signal to channel 1 or/and 2 
• Spectrum of input input signal to channel 1 or/and 2 along with input signal 

to channel 1 or/and 2 
 
Spectrum of a given channel is displayed only if the channel is enabled. Along with spectrum 
chart, an appropriate spectrum scales on the screen margin is displayed 
(depending on the kind of spectrum, it is either mV or dB scale).  
By dragging the screen (pressing left button of the mouse and moving the mouse), 
the horizontal and vertical position of signals can be changed. 
 

 
Figure 114  Oscilloscope & Spectrum Analyzer Screen 
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The oscilloscope enables to measure distance in mV and time between two points 
on the screen (called “ticks”). It can be enabled on the Control Panel. The mechanism 
is explained in the figure below.  
 

 
Figure 115  Oscilloscope’s “Ticks” 

 
Once the “ticks” are enabled (for specific channel), the cursor of the mouse is fallowed on 
the screen by “X”. The fist “X” is red, it is the starting point for distance calculation. When 
a place on the screen is clicked, the red “X” is left in this place and a blue “X” appears. 
The blue “X” is accompanied with the information about the channel for which the “ticks” are 
enabled (different channels can have different volts/div settings, thus the measurement 
of distance is different), the voltage and time measured in the way explained in the figure 
above.  In working with “ticks” the following rolls must be remembered: 

• The tick which follows mouse cursor can be set in a place on the screen 
by clicking the screen. 

• When both ticks are set in a position on the screen (the mouse cursor is “free): 
o If red tick is clicked with the mouse cursor, positions of both “ticks” are 

reseted and red “X” starts to follow the cursor 
o If any place, except red “X”, is clicked, position of blue “X” is reseted, and 

it starts following the mouse cursor.  
• When the left mouse button is kept pressed, the position of displayed signals can 

be changed 
 

5. CONTROL AND AUXILIARY PANELs 
 

 
Figure 116 Oscilloscope and Spectrum Analyzer’s control and auxiliary panel 
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1. Shows whether Applet is connected to the server and hardware (see 1). 
2. State of the device:   

a. IDLE – initial state,  
b. SINGLE –acquisition is running in single mode,  
c. AUTO – acquisition is running in auto mode,  
d. NORMAL – acquisition is running in normal mode,  
e. STOPPED – when acquisition was forced to stop by clicking STOP, 
f. Acquiring data – when data is being sent from the server to the applet, 
g. New data (disarmed) – Acquisition stopped after successfully acquiring data. 

3. Enable to control acquisition: 
a. SINGLE – data is acquired one time after trigger occurred, 
b. NORMAL – data is acquired each time the trigger occurs until stopped with STOP 

button, 
c. AUTO – data is acquired continuously, regardless of the trigger occurrence, until 

stopped with STOP button, 
d. STOP – stops data acquisition. 

4. Set TIME/DIV for both channels. 
5. Enables measurement of voltage and time with “ticks” for channel 1. 
6. Enables display of channel 1. 
7. Sets VOLTS/DIV for channel 1. 
8. Sets vertical position of channel 1 signal . 
9. Sets sampling time (range: 10ns – 250us). 
10. Sets record length (maximum record length depend on the sampling time: recLen= 

131072 * samplingTime). 
11. Changes spectrum scale from mV to dB. 
12. Enables spectrum analyzer – spectrums of enabled channels are displayed 

on the screen . 
13. Sets FREQ/DIV . 
14. Changes horizontal position of spectrum. 
15. Displays parameters set during latest acquisition – the data which is displayed 

on the screen was acquired with this parameters set. 
16. Changes horizontal position of signals. 
17. Sets delay time in [ns] – delay time is an interval between trigger occurrence and 

acquisition start. 
18. Enables delay – it is not enough to set the delay time in 17, it needs to be enabled 

to here. 
19. Sets the edge on which trigger should occure. 
20. Trigger source: 

a. Button – acquisition is started when “Trigger” button is pressed, 
b. Chan2 – acquisition is started when signal on channel 2 fulfils “trigger conditions” 

(trigger level and edge), 
c. Ext - acquisition is started when falling/rising edge is detected in external signal. 

21. Starts acquisition when trigger source is set to “button”. 
22. Sets trigger level  when trigger source is set to “chan 1” or “chan 2”. 
23. Send reset signal to FPGA logic. 
24. Data read from the device is multiplied by this factor. 
25. Displays “raw data” in a separate window. 
26. Enables to test the applet without any source of signal – signal is generated by 

the applet itself as if when offline. 
27. enables to choose kind of generated signal on channel 2 (only). 
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Appendix D – Developer’s web page 
 
This is a content of the web page existing on author’s web site [65]  which is meant for 
UMSWI developers. It contains all the codes and binaries used by the system and explains 
how to used them.  It is included on the CD as well. 
1 Downloads: 

• Binaries (Download):  
o loaderML.bin - Bootloader, source code (modified from TWarm, which in turn was 

modified from Flabio Ribeiro (etc.) - this bootloader was modified to start the Linux 
directly. It means that, in normal operation, the zImage is copied from flash and run 
by bootloader (not U-Boot), it is recommended to upload new zImage to flash using 
bootloader. In case of development U-Boot can be started by choosing menu option 4  

o zImageML - kernel + rootfs in one zImage (Linux-2.6.19, taken from TWarm, modified 
configuration, customized rootfs, includes all the UMSWI's utilities in /usr/AMRsocpe 
folder)  

• Configuration (Download):  
o busybox.config - configuration used for Busybox-1.00  
o kernel.config - configuration used for Linux-2.6.19 (patched and modified by Poles 

in TWarm  
• Oscilloscope and Spectrum Analyzer Java Applet source code (Download) - the project 

was developed in Eclipse, it needs javac at least 1.5. It was painfully learnt that earlier 
version are not enough. The compilation should be done under Linux.  

o src/ - folder with sources  
o bin/ - folder with compiled classes  

• Bootloader's source code (Download)  
• SCPI server (Download):  

o src/ - folder with sources  
o doc/ - documentaton generated by doxygen, available here as well  
o scpi_server - binary (to run SCPI Server on port 2020 : ./scpi_server -s 2020)  

• Linux Device Driver providing communication with FPGA (Download):  
o src/ - folder with sources  
o fpga.ko - driver compilled as module (to instal issue: insmod fpga.ko)  

• FPGA Logic (Download) - it is a project in ALTERA Quartus II - the entire VHDL code is 
in the file: acquisition_controller.vhd, the binary file is here  

• FPGA configuration application (Download)  
o src/ - folder with sources  
o config - complied binary (to load mag_fpga.rbf: ./config mag_fpga.rbf)  

• MMC/SD content(Download) - Content of MMC/SD card is initially equal to 
/usr/ARMscope folder in rootfs,  

• Root file system (Download)  

 
2 Development environment 
The project is being developed with the workstation running Debian distribution of Linux 
(GOOD BLESS Debian :). The cross-compilation tool used during the development was 
intalled as a debian package using Synaptic Package Manager . The package was prepared 
by Free Electrons. I followed this, see Lab 3- Cross-compilation. Remember to export: 
 
export PATH=/usr/local/uclibc-0.9.28-2/arm/bin/:$PATH 
export CROSS_COMPILE=arm-linux- 
export ARCH=arm 
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3 MMC/SD card content 
Tools and data which are used by the system are stored in /usr/ARMscope folder and 
on MMC/SD card. Its organization is presented below: 

 
Figure 117 MMC/SD card content 

 
FPGAconfig/  holds the .rbf file with FPGA logic configuration and a small application which 

configures FPGA.  

• FPGAdriver/  holds FPGA Linux Device Driver compiled as a loadable module 
and a script which loads the driver and creates entry in /dev  

• scpi/ _server holds SCPI server application  
• www/  - the UMSWI website  

o cgi-bin/  - CGI scripts  
� oscilloscope/  - used in applet-driver communication  
� systemConfig/  - used for system configuration  

o oscilloscope/  - oscilloscope and spectrum analyzer applet  
o data/  - data available on the website, i.e. Matlab scripts  
o images/  - images used on the website  

• data/  - holds information which needs to be stored between boots, i.e. default IP  
• start  is a script which starts UMSWI utilities  

4 Linux start-up 
During the development phase, both loaders (Bootloader and U-boot) were used. U-boot 
passes to kernel boot parameters and PHY parameters (i.e. MAC address). To enable 
booting the kernel and root file system from flash memory without U-Boot, modifications 
in BusyBox’s configuration and TwARM's bootloader were needed. A tool enabling MAC 
address to be set when Linux is on (Networking Utilities ---> ifconfig/Enable option "hw" 
(ether only)) was added in BuysBox configuration and Linux start-up script (/etc/inittab) was 
appended with the line which sets up MAC address. The loader was modified to include 

default Linux start after short delay. Modified loader’s menu in presented in the picture . 

Starting u-boot is still possible , since it can be useful for further development and there 
is enough space in the flash memory. However, a modification was made to the address 
in which the u-boot is started.  

 
 

Figure 118 Bootloader’s menu 
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UMSWI specific startup operations are done in three steps: 

• 1. The MMC/SD card with UMSWI utilities is attempted to be mounted 
in /usr/ARMscope/ location. The /usr/ARMscope/ folder hold all the custom-made 
UMSWI utilities. The mounting is done in /etc/init.d/rcS system initialization script  

• 2. httpd web server is started as "respawn" (/etc/inittab file)  
• 3. /usr/ARMscope/start script is called (in /etc/inittab) . This script is used for 

the UMSWI utilities initialization and can be modified by the user easily. It starts 
the following initialization (by calling appropriate scipts):  

o Configures FPGA (config_FPGA script)  
o Loads FPGA driver (load_driver script)  
o Starts SCPI Server if Enabled (start_scpi script)  
o Sets the default IP (set_IP script)  

The following Linux start-up were prepared appropri ately  
/etc/inittab 

--------------------------------------------------------------------------------------- 
# /etc/inittab 
# 
# Copyright (C) 2001 Erik Andersen <andersen@codepoet.org> 
# 
# Note: BusyBox init doesn't support runlevels.  The runlevels field is 
# completely ignored by BusyBox init. If you want runlevels, use 
# sysvinit. 
# 
# Format for each entry: <id>:<runlevels>:<action>:<process> 
# 
# id        == tty to run on, or empty for /dev/console 
# runlevels == ignored 
# action    == one of sysinit, respawn, askfirst, wait, and once 
# process   == program to run 
 
# Startup the system 
null::sysinit:/sbin/ifconfig eth0 hw ether 00:08:03:7a:3e:16 
null::sysinit:/sbin/ifconfig lo 127.0.0.1 up 
null::sysinit:/sbin/route add -net 127.0.0.0 netmask 255.0.0.0 lo 
null::sysinit:/sbin/ifconfig eth0 192.168.1.101 up 
null::sysinit:/sbin/route add -net 192.168.1.101 netmask 255.255.255.0 eth0 
 
# main rc script 
::sysinit:/etc/init.d/rcS 
 
 
#start ARMscope utilities 
 
null::sysinit:/usr/ARMscope/start 
null::respawn:/usr/sbin/httpd -h /usr/ARMscope/www/ 
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# Set up a couple of getty's 
#tty1::respawn:/bin/runterm.sh 
#tty2::respawn:/sbin/getty 38400 tty2 
 
# Put a getty on the serial port 
ttyS0::respawn:/sbin/getty -L ttyS0 115200 vt102 
#::respawn:/bin/sh 
#::respawn:/bin/login -- root 
 
#run application 
#ttyS0::once:/mnt/flash01/startup 
 
# set up stuff for logging 
#tty4::respawn:/usr/bin/tail -f /var/log/messages 
 
# Stuff to do for the 3-finger salute 
::ctrlaltdel:/sbin/reboot 
 
# Stuff to do before rebooting 
null::shutdown:/bin/umount -a -r 
--------------------------------------------------------------------------------------- 

/etc/init.d/rcS 
--------------------------------------------------------------------------------------- 
#!/bin/sh 
 
mount -t proc none /proc 
#mount -t devpts none /dev/pts 
 
#echo 'mounting /usr/ARMscope/' 
sleep 3 
mount -t vfat /dev/mmcblk0 /usr/ARMscope/ 
sleep 3 
--------------------------------------------------------------------------------------- 

 
Sleep is needed to allow Linux to "see" the mmcblk0 device and later to mount it. 
 /etc/fstab 

--------------------------------------------------------------------------------------- 
# /etc/fstab: static file system information. 
# 
# <file system> <mount point>   <type>  <options>               <dump>  <pass> 
/dev/root       /               auto    defaults,errors=remount-ro      0 0 
proc            /proc           proc    defaults                        0 0 
/dev/mmcblk0 /usr/ARMscope vfat defaults   0 0 
--------------------------------------------------------------------------------------- 

 
5 ARMscope package 
 
Everything to build zImage should be available here: Download(270MB !!!!) 
This package is located (not entirely legaly) on EiTI's server mion, the transfer is not good 
and it may be deleted by admin at any time 
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If you manage to download it (CONGRATULATIONS), this is how the zImage can be 
created:  
5.1 Development environment 
See 2 Development Environment to know how to install cross compilation toolchain. 
Don't remember to export environmental variables: 
 
$export PATH=/usr/local/uclibc-0.9.28-2/arm/bin/:$PATH 
$export CROSS_COMPILE=arm-linux- 
$export ARCH=arm 
 
Things will need to be done as root ($su). The ARMscope package needs to be untarred in 
convenient location, in my case in /home/maciex/armbuild ($tar -xvvf armscope.v8). 
The package contains the following stuff: 

• linux-2.6.19  - patched, appropriately modified and configured kernel  
• busybox-1.00  - configured Busybox  
• config  - configuration files for Linux and Busybox  
• loader_ML  - source code of modified Bootloader  
• root_fs  - root file system, the one which is compiled into zImage  
• SD_card  - content which should be copied to SD card  
• binaries  - compiled Bootloader and zImage  

5.2. Configuration and compilation of busybox 
If Busybox needs to be compiled (usually it's not the case), the location of its instalation 
needs to be indicated.  
 
$cd armscope.v8/busybox-1.00/ 
$make menuconfig 
 
Set location of root_fs (in my case: /home/maciex/armbuild/armscope.v8/root_fs) 
in Instalation Options  
 
$make clean 
$make 
 
5.3. Configuration and compilation of kernel 
Before compiling kernel, its configuration needs to be change, so that the root_fs folder 
location is indicated 
 
$cd armscope.v8/linux-2.6.19/ 
$make xconfig 
 
Go to: General setup --->Initramfs source file(s): and set the location (in my case: 
/home/maciex/armbuild/armscope.v8/root_fs) 
Save changes. 
 
$make clean 
$make 
.........Wait.......... 
zImage is in: arch/arm/boot 
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Appendix D – Additional Materials on the Accompanyi ng CD 
Location Content 

Bibliography/ All the articles, datasheets, information which is in the 
“Bibliography” list and could be legally downloaded 

Binaries/ Binaries for UMSWI  
SD_card/ Content of MMC/SD card which should be insterted to 

the device 
Tests Test data, Matlab scripts with results interpretation 
Development/ Set of tools, codes etc which can be used to further 

develop UMSWI 
Environment/ 

 
Patched and configured Linux kernel, Busybox, u-boot, 
Bootloader, prepared root file system. With very few 
changes in configuration (setting the right paths) it can 
be used to create binaries for UMSWI 

FPGAconfig/ Application used for FPGA configuration  
bin/ Binary  
src/ Source code 

FPGAdriver/ FPGA Linux Device Driver – used for communication 
between Linux User Space and FPGA Logic 

bin/ Cross-compilled Linux Module 
src/ Source code 

 

doc/ Doxygen generated documentation 
FPGAlogic/ FPGA logic including Communication and Data 

Acquisition Management Logics 
bin/ rbf file 
src/ VHDL source code 

 

QuartusProject/ Project in Quartus used for FPGA logic development 
(with pins assigned) 

JavaApplet/ Oscilloscope and Spectrum Analyzer Java applet 
bin/ Binaries (compiled under Linux with java version 

“1.5.0_14”) 
src/ Source code 
EclipseProject/ Project in Eclipse used for applet development 

 

doc/ Javadoc documentation 
SCPIserver/ SCPI Server 

bin/  Crosscompiled for ARM 
src/ Source code 

 

doc/ Doxygen generated documentation 
WWWforDevelopers/ UMSWI website as is on author’s homepage, it includes 

additional page for developers 

 

WWWforUMSWI/ UMSWI website embedded in the device 
MaciejLipinski.doc Master Thesis (MS World) 
MaciejLipinski.pdf Master Thesis (pdf) 

UMSWIwebsite 
Shortcut to UMSWI website (as is provided by the 
device) 

UMSWIdevelopersWebsite 
Shortcut to developers’ UMSWI website (as is on the 
authros’s website) 
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