

WARSAW UNIVERSITY OF TECHNOLOGY

Faculty of Electronics and Information Technology
Institute of Electronic Systems

Maciej Lipi ński
198420

Master Thesis

Universal Measurement System
with Web Interface

Supervisor:

Ph.D. Krzysztof Po źniak

Warsaw, 2009

 Universal Measurement System with Web Interface

Maciej Lipiński 2

Acknowledgements

Multitude of gratitude to Grzegorz Kasprowicz for continuous,
instant and thorough support throughout the project.

* * *

Many thanks to Zbigniew Reszela, my colleague at CELLS
synchrotron, for theoretical help in the field of application design and

data structures.

 Universal Measurement System with Web Interface

Maciej Lipiński 3

Abstract

Universal Measurement System with Web Interface

Modern trends in measurement instrument development include miniaturization
and remote control. Remote control interfaces offered by measurement devices
increasingly often include Graphic User Interface(GUI) which reflects the appearance
of local user interface (i.e. screen, buttons). The later is one of the limitations
in miniaturization. More and more often, measurement devices are used only
remotely, in which case, the local interface is unnecessary or even unwanted.
Instruments controlled by remote GUI displayed using a PC or laptop seem to be
a new direction in the development of measurement devices.

Universal Measurement System with Web Interface (UMSWI) was created for
High Energy Physics, i.e. accelerator diagnostics. UMSWI’s hardware (commercially
available) is a small, modular, embedded system, designed according to modern
trends. It incorporates powerful microprocessor (capable of running embedded
operating system) and Field Programmable Gate Array (enabling fast, concurrent
data processing). In order to efficiently use the hardware resources and create
a state-of-art measurement instrument, which follows modern trends, a control
system (software and FGPA logic) needed to be created, the creation preceded
by in-depth research of existing solutions and available technologies.

This thesis is a theoretical and practical study of UMSWI’s control system which
enables to manage the hardware and conduct measurement providing web-based
and Standard Commands for Programmable Instrumentation (SCPI) interfaces.
The project included implementation of simple digital oscilloscope and spectrum
analyzer functionalities and GUIs. The device’s innovative character is determined
by the fact that no dedicated server or client software is required to operate it. Since
the measurement system is simultaneously a server, it can be connected directly
to an intranent, Internet or PC/laptop and accessed using only web browser.

Moreover, the control system, which has been created, enables easy
extensions (i.e. implementation of frequency counter) and the modular hardware
architecture allows to change the quantities measured (i.e. instead of using recorder
module with Analog-to-Digital Converter, a weather station can be installed). Further
more, the control system architecture is platform-independent and the system can be
ported to any microprocessor capable of running Embedded Linux. Such features
highlight system’s universality.

 Universal Measurement System with Web Interface

Maciej Lipiński 4

Streszczenie

Uniwersalny System Pomiarowy z Interfejsem Webowym (USPIW)

 Znaczenie zdalnego sterowania jest coraz większe i permanentnie rozszerza
się spektrum jego zastosowań. Urządzenia pomiarowe w tym względzie nie stanowią
wyjątku. Zdalnie sterowane instrumenty pomiarowe są coraz bardziej popularne,
a w niektórych sytuacjach niezbędne. Podczas wykonywania pomiarów w miejscach
niebezpiecznych muszą być one stosowane. Jednocześnie wygoda wykonywania
pomiarów z biura lub jakiegokolwiek miejsca na świecie staje się coraz bardziej
atrakcyjna. Większość nowoczesnych instrumentów pomiarowych daje moŜliwość
zdalnej kontroli. Poza standardami słuŜącymi do programowania i obsługi
instrumentów pomiarowych z poziomu aplikacji pomiarowych (LabView), coraz
częściej zdalna kontrola obejmuje GUI (Graphic User Interface). W tym przypadku
wirtualny interfejs imituje wbudowany panel frontowy urządzenia (np. e*Scope firmy
Tektronix [7]). Przyrządy pomiarowe podlegają ciągłej miniaturyzacji. Jednym
z elementów ograniczających zmniejszenie rozmiarów jest konieczność
umieszczenia w urządzeniu pomiarowym panelu sterującego z ekranem. Coraz
częściej zdarza się takŜe, Ŝe przyrządy pomiarowe wykorzystywane są wyłącznie
w trybie zdalnym. Wówczas wbudowany interfejs lokalny przyrządu pomiarowego
staje się niepotrzebny lub wręcz niepoŜądany, gdyŜ, po pierwsze utrudnia dalszą
miniaturyzację urządzenia i po drugie stanowi niepotrzebny wydatek.
 Zdalna kontrola urządzeń pomiarowych w postaci GUI odzwierciedlającego
panel frontowy urządzenia juŜ nie tylko stanowi dodatkową funkcjonalność, ale moŜe
skutecznie konkurować z lokalnym interfejsem wbudowanym, a nawet przewyŜszać
go moŜliwościami. Pozwala ona na obsługę wielu urządzeń z jednego stanowiska
(PC/laptop) czy łatwe pozyskiwanie danych pomiarowych do dalszej analizy.
Co więcej, zawsze istnieje moŜliwość wykorzystania interfejsu zdalnego lokalnie
ustawiając PC/laptop obok urządzenia pomiarowego. Dlatego nowym i rozwojowym
kierunkiem w dziedzinie takich urządzeń wydają się być przyrządy pozbawione
wbudowanego interfejsu uŜytkownika. Urządzenia te mogą być atrakcyjne zarówno
dla uŜytkowników jak i producentów, gdyŜ zmniejszają koszt produkcji
(brak wyświetlacza, itp.) oraz pozwalają na większą uniwersalizacje przyrządów.
Funkcjonalność urządzenia jest w duŜej mierze zaleŜna od interfejsu, a jeśli ten jest
wirtualny, jego wymiana wymaga jedynie nowego oprogramowania. Urządzenia
sterowane wyłącznie za pomocą zdalnego GUI pojawiły się juŜ na rynku
(np. BitScope [11]).

Uniwersalny System Pomiarowy z Interfejsem Webowym jest urządzeniem
stworzonym na potrzeby Fizyki Wielkich Energii, m.in. diagnostyki akceleratorowej.
Baza sprzętowa instrumentu (dostępna komercyjnie) jest miniaturowym, modularnym
urządzeniem wbudowanym, które zostało zaprojektowane zgodnie z najnowszymi
trendami. Urządzenie to łączy mikroprocesor o duŜych moŜliwościach obliczeniowych
z układem logicznym FPGA (Field Programmable Gate Array). Mikroprocesor
(ARM9 [45]) pozwala na uruchomienie systemu operacyjnego, zaś FPGA
(ALTERA Cyklon I [21]) umoŜliwia szybkie, równoległe przetwarzanie danych. Aby w
pełni wykorzystać moŜliwości sprzętowe tego urządzenia i stworzyć produkt
wpisujący się w nowoczesne trendy rozwoju systemów pomiarowych, konieczne było
wykonanie odpowiedniego systemu sterującego (oprogramowanie i układ logiczny)

 Universal Measurement System with Web Interface

Maciej Lipiński 5

poprzedzone przeglądem istniejących rozwiązań i moŜliwych do wykorzystania
technologii.

Bardzo waŜną konkluzją z przeglądu istniejących rozwiązań jest fakt,
iŜ oferowane przez producentów instrumentów pomiarowych wirtualne zdalne panele
graficzne (GUI) wymagają instalacji oprogramowania po stronie klienta
lub przygotowania dedykowanego serwera z odpowiednim oprogramowaniem
podłączonego do urządzenia pomiarowego.

Celem tej pracy było wykorzystanie dostępnej komercyjnie bazy sprzętowej
do stworzenia autonomicznego i uniwersalnego systemu pomiarowego ze zdalnym
sterowaniem opartym na interfejsie WWW. Niniejsza praca stanowi opracowanie
teoretyczne i realizacje systemu sterującego USPIW. System ten obejmuje logikę
do FPGA, Embedded Linux zoptymalizowany i skonfigurowany na potrzeby USPIW,
a takŜe szereg aplikacji i rozwiązań umoŜliwiających kontrolę urządzenia
i wykonywanie pomiarów z poziomu strony WWW oraz wybranego interfejsu
pomiarowego (Standard Commands for Programmable Instrumentation). W ramach
pracy i zgodnie z wymaganiami początkowymi, zaimplementowano
GUI i funkcjonalność umoŜliwiające na wykorzystanie urządzenia jako prostego
oscyloskopu cyfrowego i analizatora widma.

Podstawą budowy systemu sterującego USPIW jest system operacyjny Linux,
co pozwala na uniezaleŜnienie architektury USPIW od platformy sprzętowej oraz
wykorzystanie istniejących rozwiązań czy aplikacji. System sterujący USPIW moŜe
zostać uruchomiony na dowolnym mikroprocesorze, na którym moŜliwe
jest uruchomienie Linux’a. Linux dla USPIW stworzony został w oparciu o jądro
2.6.19 odpowiednio zmodyfikowane i skonfigurowane. System plików
zaimplementowany został jako initramfs – wkompilowany w obraz z jądrem,
ładowany do pamięci RAM przy starcie systemu.

Układ logiczny opisany w języku VHDL (Very High Speed Integrated Circuit
hardware description language) i zaimplementowany w FPGA ma dwa zadania:
obsługa komunikacji z mikroprocesorem i zarządzanie akwizycją danych. Akwizycja
danych kontrolowana jest przez mikroprocesor przy pomocy szeregu parametrów
zapisywanych w rejestrach kontrolnych FPGA (wykorzystując logikę obsługującą
komunikację). Logika zarządzająca akwizycją na bieŜąco kontroluje stan rejestrów
i reaguje w odpowiedni sposób na zmianę ich zawartości. Komunikacja
w przeciwnym kierunku (logika akwizycji->mikroprocesor) działa analogicznie.
Rejestry kontrolne umieszczone są w obszarze adresowym mikroprocesora. Podczas
akwizycji danych wartości napięcia odczytane z przetworników analogowo-cyfrowych
zapisywane są w pamięci SSRAM (Synchronous Static Random Access Memory).
Po zakończeniu akwizycji następuje odczyt danych z SSRAM do mikroprocesora,
przesłanie do klienta i przetworzenie do formy graficznej.

Komunikacja z FPGA po stronie mikroprocesora i systemu operacyjnego
zapewniona jest przez stworzony do tego celu sterownik do Linux’a (Linux Device
Driver). Sterownik ten pozwala na komunikację z logiką zaimplementowaną w FPGA
na róŜnych poziomach abstrakcji (ogólny, wyspecjalizowany) i róŜnymi metodami
(przez ioctl lub system plików /proc).

Urządzenie obsługiwane jest z poziomu strony WWW. Głównymi jej składnikami
są: Interfejs Oscyloskopu i Analizatora Widma oraz Interfejs Zarządzania
Urządzeniem. Strona WWW Uniwersalnego Systemu Pomiarowego z Interfejsem
Webowym dostarcza dodatkowo krótką informację o projekcie, instrukcje obsługi,
oraz przykłady zastosowań (skrypty Matlab). Bardzo waŜną kwestią podczas pracy
nad projektem był wybór odpowiednich technologii do stworzenia Interfejsu

 Universal Measurement System with Web Interface

Maciej Lipiński 6

Oscyloskopu i Analizatora Widma. Spośród wielu moŜliwości rozwiązania tego
zadania i technologii moŜliwych do zastosowania w jego realizacji, wybrano
implementacje GUI jako Apletu Java’owego. Komunikacja apletu ze sterownikiem
Linux’owym, a w konsekwencji z logiką FPGA, odbywa się z wykorzystaniem
Common Gate Interface (CGI). Zastosowanie Apletu Java’owego, który wykonywany
jest w przeglądarce na komputerze klienta oraz CGI pozwoliło na przeniesienie
wymagań na moc obliczeniową z ograniczonego w zasobach mikroprocesora USPIW
na komputer klienta. Takie zadania jak generacja grafiki, interakcja z uŜytkownikiem,
przechowywanie danych pomiarowych odbywają się po stronie klienta, nie obciąŜają
USPIW i redukują ilość przesyłanych informacji między serwerem (znajdującym się
w USPIW) i klientem. Architektura Apletu Java’owego oparta jest o wzór
Model-View-Controller (MVC) [61] , który umoŜliwia dokonywanie zmian w kaŜdym
z trzech komponentów architektury (modelu danych, interfejsie uŜytkownika, logice
sterowania) niezaleŜnie. Sprawia to, iŜ aplet moŜe zostać łatwo rozszerzony o nowe
funkcje lub wykorzystany do implementacji całkiem nowych zadań.

Interfejs Zarządzania Urządzeniem wykorzystuje CGI do wywoływania funkcji
systemowych lub uruchamiania aplikacji oraz Java Script do weryfikacji danych
wejściowych.

Zastosowane technologie oraz fakt, iŜ urządzenie pomiarowe jest jednocześnie
serwerem, pozwoliły uwolnić uŜytkownika od konieczności instalowania
dedykowanego oprogramowania lub stosowania specjalnego serwera podłączonego
do urządzenia. UŜytkownikowi nie potrzebne są specjalne uprawnienia,
aby obsługiwać USPIW. Pod tym względem stworzony system wyprzedza oferowane
komercyjnie rozwiązania i moŜe być nazwany innowacyjnym

Aby USPIW mógł zostać zintegrowany w większym systemie pomiarowym
lub być obsługiwany przez aplikacje pomiarowe (np. w celu zaprogramowania
przebiegu pomiaru), zaimplementowano Interfejs do Zdalnych Pomiarów. Istnieje
wiele standardów pozwalających na realizację tego zadania. Bardzo powszechnym
i często stosowanym jest Standard Commands For Programmable Instruments
(SCPI) [57] . Standard ten określa składnię i strukturę poleceń do kontroli
programowalnych instrumentów pomiarowych. W USPIW zaimplementowany został
jako serwer socket’owy. Składa się on z interfejsu uŜytkownika, analizatora składni,
dekodera poleceń, interfejsu ze sterownikiem oraz systemu zapisywania informacji
o pracy serwera (logowanie). WdroŜony serwer realizuje prosty słownik poleceń
dla oscyloskopu. Budowa Serwera SCPI pozwala na jego łatwe rozszerzenie o nowe
funkcje. Interfejs przetestowany został przy pomocy aplikacji Matlab. Odpowiednie
skrypty uŜyte w tym celu i pozwalające na połączenie się z USPIW
oraz przeprowadzenie pomiarów dostępne są na stronie USPIW.

Dzięki innowacyjnej budowie i architekturze systemu, do jego obsługi
niepotrzebny jest dedykowany serwer (np. w postaci komputera PC), ani specjalne
oprogramowanie klienckie. Urządzenie moŜe zostać podłączone bezpośrednio
do intranetu, Internetu lub komputera osobistego. Zwykła przeglądarka internetowa
umoŜliwia bezpośredni dostęp do wbudowanego interfejsu WWW, który pozwala
na zarządzenia urządzeniem i przeprowadzanie pomiarów. Stworzony system
sterujący USPIW daje moŜliwość łatwego rozszerzenie funkcjonalności urządzenia
(np. o funkcjonalność częstościomierza). Architektura GUI (Aplet Java’owy) pozwala
na łatwe dodawanie nowych paneli kontrolnych przy wykorzystaniu uniwersalnych
metod komunikacji ze sprzętem. Modularna budowa bazy sprzętowej umoŜliwia
zmianę mierzonych wartości. MoŜna zamontować, np. stację meteorologiczną,
zamiast modułu z przetwornikami analogowo-cyfrowymi, a następnie wykorzystać

 Universal Measurement System with Web Interface

Maciej Lipiński 7

istniejące rozwiązania do stworzenia odpowiedniego interfejsu. Co więcej,
architektura i rozwiązania zastosowane w USPIW są niezaleŜne od platformy
sprzętowej. Dzięki temu mogą stanowić podstawę do stworzenia interfejsu
sterującego dla dowolnego urządzenia (jeśli mikroprocesor pozwala na uruchomienie
Linux’a), które ma być zarządzane zdalnie za pomocą połączenia Ethernet.

System spełnił wszystkie wymagania początkowe, a nawet przewyŜszył je pod
względem uniwersalności. Pomyślnie przeszedł on testy w warunkach
laboratoryjnych, a następnie został wykorzystany do pomiarów w Europejskiej
Organizacji Badań Jądrowych (CERN). Pomiary przeprowadzone zostały
w akceleratorze PS (Proton Synchrotron). Obejmowały analizę kształtu i widma
sygnału elektrycznego z czujników pomiarowych detektujących przyspieszane
protony.

 Universal Measurement System with Web Interface

Maciej Lipiński 8

Table of Contents

Acknowledgements................................... ... 2

Abstract 3

Streszczenie....................................... ... 4

Table of Contents 8

1. Introduction 11

1.1 Remote control of measurement instruments.......... ..12

1.2 Web User Interface to control hardware12

1.3 Examples of commercially available solutions13
1.3.1 Tektronix..13
1.3.2 Agilent..14
1.3.3 BitScope ..15

1.4 Hardware solutions for measurement systems......... ...15

1.5 Universal Measurement System with Web Interface (UM SWI)16
1.5.1 UMSWI hardware architecture and dataflow ..17
1.5.2 Embedded Operating System ..18

1.6 The Thesis Project Genesis and Objective18

1.7 Requirements....................................... ...18

2. Architecture 20

2.1 Embedded Operating System – Linux.................. ...21
2.1.1 Embedded Linux System for UMSWI...21

2.2 FPGA logic22

2.3 Hardware-software communication layer24
2.3.1 FPGA configuration..24
2.3.2 Communication between ARM and FPGA ...24

2.4 Web User Interface25
2.4.1 Oscilloscope and Spectrum Analyzer...25
2.4.1.1 Java Applet architecture...27
2.4.2 UMSWI Management Interface..28

2.5 Remote Measurement Interface....................... ..29
2.5.1 A Note on SCPI Complience..31

2.6 Summary31

3. Design and Implementation 33

3.1 Development environment............................ ...33

3.2 Embedded Linux Operating System.................... ..35
3.2.1 Components ..35
3.2.2 Configuration ...36
3.2.3 System boot and startup ..37

 Universal Measurement System with Web Interface

Maciej Lipiński 9

3.2.4 UMSWI utilities organization ..40

3.3 Implementation of the FPGA logic in VHDL........... ...40
3.3.1 Communication logic..41
3.3.2 Acquisition Management Logic ..45
3.3.3 Trigger detection..48

3.4 Linux Device Driver49
3.4.1 Abstract layer...50
3.4.1.1 Debugging ...52
3.4.1.2 /proc filesystem..53
3.4.1.3 ioctl ..58
3.4.2 Physical layer...62

3.5 Binding Web Interface to Device Driver with CGI.... ...64

3.6 Web Interface65
3.6.1 Oscilloscope and Spectrum Analyzer GUI ...66
3.6.1.1 Model...67
3.6.1.2 View...71
3.6.1.3 Controller ...73
3.6.2 UMSWI management and configuration...74

3.7 Measurement Interface.............................. ...75
3.7.1 User interface ..76
3.7.2 Pre-parser..76
3.7.3 Parser ..76
3.7.4 Commands decoder...77
3.7.5 Command logic..78
3.7.6 Hardware interface...79
3.7.7 Logfile interface ...79
3.7.8 Extendibility..80

4. Testing 82

4.1 Development test................................... ...82
4.1.1 Embedded Linux Operating System...82
4.1.2 Linux Device Driver..82
4.1.3 FPGA debugging ...83
4.1.4 Applet tests..84
4.1.5 SCPI server tests...84

4.2 Final tests.. ..85
4.2.1 Test set-up...85
4.2.2 Vertical axis measurements ...86
4.2.3 Horizontal axis measurements...89
4.2.4 Frequency domain ...90
4.2.5 Boundary conditions tests ..92
4.2.5.1 Hardware-wise...92
4.2.5.2 Software-wise ..93
4.2.6 UMSWI parameters ...93

5. System Applications................................ .. 94

5.1 European Organization for Nuclear Research (CERN)..94

 Universal Measurement System with Web Interface

Maciej Lipiński 10

5.2 Potential applications............................. ..96

6. Conclusions.. .. 98

Appendix A – Additional information................ .. 99

1. UMSWI hardware analysis............................ ... 99

1.1 Data acquisition hardware architecture99

2. Review of available technologies 100

2.1 Embedded Operating Systems100

2.2 Remote Measurement Interfaces...................... ...100
2.2.1 Physical layer...101
2.2.2 Abstract layer...101

2.3 Web technologies to control hardware102

2.4 Web Graphic User Interfaces........................ ...104

2.5 Web servers104

3. Descriptions of chosen solutions................... .. 104

3.1 General architecture of embedded Linux............. ...104

3.2 Model-View-Controller (MVC) design pattern106

3.3 Observer-Observable paradigm107

3.4 Standard Commands for Programmable Instruments (SCP I)..........................107

4. Parameters of digital oscilloscope 109

Appendix B – FPGA – ARM interface.................. .. 111

Appendix C – Example Manual........................ .. 114

Appendix D – Developer’s web page 118

Appendix D – Additional Materials on the Accompanyi ng CD 123

Appendix E – List of Figures 124

Appendix F – List of Tables 127

 Universal Measurement System with Web Interface

Maciej Lipiński 11

1. Introduction

The significance of remote control is increasing in the entire spectrum of applications,
measurement is not an exception. Remotely controlled measurement instruments are both
popular and needed. When acquisition is made in a dangerous place, remote control
is necessary. However, the convenience of performing measurement from the office or any
location in the world is becoming increasingly important and appealing nowadays. That
is why most of the vendors of measurement equipment offer their instruments with remote
control. It is a standard for good and expensive measurement devices, i.e. oscilloscopes,
to offer control via USB, Ethernet, GPIB, etc. Such devices can be remotely controlled using
measurement applications, special software provided by the vendors or web interface.
Remote control interfaces provide functionality at least equal to the functionality of local
interfaces.

In the measurement devices (in principle, any device) which are used only-remotely,
local interface (i.e. buttons, screen, knobs) can introduce unnecessary overheads in size and
costs. On the other hand, measurement devices which are used “on the spot”, can be
controlled through remote interface as well. What is more, using remote interface locally can
be preferred since it provides more functionality and enables to control many measurement
device using single PC/laptop.

It my lead to a conclusion that nowadays, remote interface can become a substitute
or competition for local interface. It seems that remote control has many advantages over
traditional control. It allows management of many instruments from one station (PC, laptop),
i.e. using single application (LabView, Matlab). It also enables to easily export data for further
analysis. The costs of production and development can be significantly reduced
by eliminating local interface. It can also remove minimal size constraints resulting
in significant size reduction, since there is no need to place screen, buttons, etc on the
device. Importantly, such devices (without local interface) do not lack any of the functionality
of standard instruments. In contrary, they are much more functional than devices with only
local interface.

Elimination of local interface can be also advantageous for equipment vendors. User
interface of only-remotely controlled devices can be easily changed by upgrading
the firmware. This is a great asset. One of the factors which determines application of
a device is it’s user interface. The possibility to easily change interface enables device to be
universal within hardware limitations.

 Universal Measurement System with Web Interface

Maciej Lipiński 12

1.1 Remote control of measurement instruments

 There are many ways a measurement device can be controlled remotely. In principle,
the solutions are divided according to the medium of communication and the software
interface. A detailed description is provided in Appendix A: 2.2 . Among 7 most commonly
implemented mediums of communication in measurement devices (GPIB, R-232, VXI,LXI,
PXI, USB and Ethernet), USB and Ethernet connections are becoming increasingly
important. The software interfaces are divided into two categories.
First category (i.e. VISA, SICL, VXI-11) enables to program measurement devices
and control then from measurement applications (i.e. LabView, Matlab). It is available via
most of the mediums of communication and is implemented in most of the measurement
devices.
Second category provides control with Graphic User Interface (GUI) which is meant
to resemble local interface. It is a new trend among measurement instruments vendors
to provide such interface. Only USB or/and Ethernet links are used in this category. The GUIs
are either implemented as stand-alone applications which connect with the device over
USB/Ethernet or Web User Interfaces which use browsers and Ethernet connection to control
measurement instruments.
 Web-based remote control via Ethernet seems especially attractive because it does not
require installation of any special software. Ethernet card and web browser are enough
to operate the device. This requirement is met by the majority of standard PCs, laptops and
some models of mobile phones. It also enables the measurement instrument, without
additional efforts (i.e. special server), to be connected to the Internet and controlled from any
place in the World (unlike USB based control).

1.2 Web User Interface to control hardware

 Web-based remote control of measurement instruments via Ethernet is an example
of Web User Interface which enables to control hardware. This form of hardware control
is increasingly popular not only among measurement devices.
 User Interface (UI), in computing, is defined as a set of means which allow interaction
(mutual exchange of information) between the user and the system (i.e. application).
If the mean of interaction is a web page which is transmitted via the Internet (Ethernet
connection) from the system (web server) to the user (web client) who views it using web
browser, the UI is referred to as Web User Interface (WUI).
 The rapid increase of Internet’s popularity resulted in widespread usage of Web User
Interfaces in new range of applications. The greatest advantage of Web User Interface is
the fact that its only hardware (Ethernet card) and software (web browser) requirements are
met by overwhelming majority of modern PCs and laptops. One of the applications of WUI
is online control of hardware. Web User Interface to control hardware is a web page which
directly reflects state of the hardware and enables the user (client) to alter this state. One
of the examples of WUI which controls hardware is the administrator’s control web page
of routers such as LinkSys [1] or Livebox [2] . Nowadays, web-based control of hardware
finds increasing number of applications in the fallowing fields:

• Intelligent buildings - WUI enables to access intelligent building’s control panel
and manage it from any location in the World (i.e. office),

 Universal Measurement System with Web Interface

Maciej Lipiński 13

• Measurement device control – WUI, which resembles the instrument, enables
to perform measurement remotely, or view measurement results by many research
teams spread around the World

• Internet remote laboratories – WUI enables to perform experiments
and measurements remotely using laboratory sets,

 Web User Interfaces can range from very simple HTML pages which are controlled
by clicking appropriate hyperlinks or inputting values into forms, to sophisticated web
applications which provide Graphics Interface (i.e. resembles actual device being controlled).
A detailed description of various technologies which enable web client to interact with
hardware is enclosed in Appendix A: 2.3 . What distinguishes such a technology
is the possibility to make system calls, start/stop applications or read/write files on server
side (which are the means to control hardware) as a consequence of web client’s request.
Since web server is the recipient of web client’s requests, it needs to be able to perform such
actions. Most servers, if not all, embed Common Gate Interface (CGI)[3] . It is an old
mechanism which enables the server to execute scripts (shell, Perl, Python, etc) or even
applications. Such scripts or applications can, in turn, access and control hardware. A newer
technology which enables hardware control, by providing file access and special functions
to run shell commands, is PHP [4] . PHP is a server-side scripting language which produces
dynamic web pages. It requires a PHP parser installed along with the web server. There
is a number of other technologies which enable to access hardware. The more sophisticated
technology (Java Servlets, ASP.NET) the more requirements needs to be satisfied by
the server. Very often the web server is embedded in the device which is being controlled.
It means that the server is run on an embedded system with limited resources which does
not allow to use sophisticated technologies. An example of such device is a measurement
instruments which provides web-based control.

1.3 Examples of commercially available solutions

 Among few commercially available solutions which enable web-based control
of measurement instruments, most is based on web servers embedded into the devices.
A background research of commercially available Web User Interfaces for measurement
instruments revealed that the number of such solutions is not great.

1.3.1 Tektronix
 Two implementations of remote control over Ethernet are offered by the Tektronix
measurement instruments. First solution uses special application, available for Windows
operating system, which needs to be installed on a PC. It is described in [5] application note
for TG700 Tektronix device. The Tektronix’s application connects to measurement
instrument in order to send commands and retrieve data.
 e*Scope is the second remote control GUI provided by Tektronix. It is a web-based
interface which provides access to all front panel oscilloscope’s controls and presents
a faithful reproduction of the oscilloscope screen. Tektronix website [6] states that:

“With the new e*Scope web based remote control feature,
a common network browser, and Internet connection,
the engineer in Beijing can see exactly what the designer
in Berlin is seeing on the TDS3000B screen-at the same time.”

 Universal Measurement System with Web Interface

Maciej Lipiński 14

 e*Scope, described in [7], operates in two modes: basic and advanced. The basic
mode is available directly after connecting a PC with LAN cable to Tektronix instrument.
The e*Scope home page, which is housed in the device, enables the user to control
oscilloscope by typing in commands. To run the advance mode, a special website provided
by Tektronix [8] needs to be accessed or a “e*Scope Software” needs to be downloaded
(to avoid connecting to Tektronix web page). The advanced mode enables user to control
oscilloscope through graphic user interface (Figure 2).

Figure 1 e*Scope basic mode Figure 2 e*Scope advanced mode

 An investigation of “e*Scope Software”, which is available for download from Tektronix
web page, enabled to learn the technology and design of e*Scope solution. It uses
JavaScript to send commands to the instrument and retrieve screen views. A screen view is
generated in the Tektronix device and send to the browser as an image in .png format.
“e*Scope Software” turned out to be a simple JavaScript.

1.3.2 Agilent
 BenchLink Web Remote Control [9] is a software that provides remote control for
Agilent’s spectrum analyzers. The software is installed on a local server computer which is
connected to the instrument via GPIB or LAN interface (Figure 3). Multiple users can access
the analyzer simultaneously from the intranet or Internet. The server requirements include:
Windows XP, 100MB free disk space, PCI expansion for PCI-GPIB card or PCMCIA in case
of using laptop or configuration to run a LAN-GPIB gateway. Only Web browser is required
from the client to operate the analyzer. The software can be tested on Agilent web site [10]
which provides a limited-features simulation of spectrum analyzer Figure 4).

Figure 3 Remote control of Agilent Analyzer Figure 4 BenchLink applet

 Universal Measurement System with Web Interface

Maciej Lipiński 15

1.3.3 BitScope
 BitScope is the only commercially available product found by the author*, which offers
only remote interface. BitScopes can be controlled via Ethernet or/and USB (depending on
the model). BitScopes are Mixed Signal Oscilloscopes, which means that they capture and
display one, two or four analog signals and eight logic or timing signals, simultaneously.
Regardless of the connection type, BitScope products are controlled by BitScope DSO
Virtual Instrument Application which needs to be installed on a PC. It integrates Digital
Storage Oscilloscope, Mixed Signal Oscilloscope, Spectrum Analyzer, Logic Analyzer, Data
recorder and Networking. The software is available for Windows and Linux workstations.
BitScope Model 100 is presented in
Figure 5. This model is USB-controlled. It is the only BitScope model which is “user
programmable and software extendable”[11] which is possible though BitLib Application
Programming Library. The library can be used with “several different programming languages
and numeric analysis environments”[11] . It can be used to operate BitScope from MatLab
or LabView as well as for writing applications with Visual Studio or Borland Delphi.
Figure 6 provides an insight into BitScope Model 100 architecture and the manual
of BitScope Model 50 [12] provides details of BitScope’s hardware. It is controlled by PIC
microcontroller (PIC16F877) and uses Complex Programmable Logic Device (M4A5-
TQFP44). 8bit Analog-to-Digital Converters are used enabling 100MHz bandwidth
and 2mV~40mV analogue sensitivity.

Figure 5 BitScope instrument and GUI

Figure 6 BitScope Model 100 architecture

1.4 Hardware solutions for measurement systems

 The multitude of features, remote measurement interfaces, sophisticated local
interfaces (i.e. touch-screens) or the ability to be controlled only remotely result in excessive
hardware requirements towards modern measurement systems. In particular, nowadays
most (if not all) measurement instruments include microprocessors which control virtually
every circuit in the measurement devices. Since modern microprocessors can be very
powerful (i.e. PowerPC [13] , ARM [14]) and the requirements on instrument’s features are
increasingly demanding, more and more measurement instruments employ embedded
operating systems (in case of less sophisticated and cheaper devices) or even normal
operating systems (very sophisticated and expensive, i.e. Agilent Infiniium Oscilloscopes [15]
work on Windows XP Pro). Such solution allows for great flexibility.

* The author cannot guarantee that there is no other similar product on the market

 Universal Measurement System with Web Interface

Maciej Lipiński 16

 On the other hand, the example of BitScope (1.3.3) shows a tendency of using
programmable logics in measurement devices. Complex Programmable Logic Devices
(CPLDs) as well as Field Programmable Gate Arrays (FPGAs) are used for signal processing
(i.e. FFT) and other operations where massive parallelism is needed. Such tasks are
performed much faster in FPGAs or CPLDs than in microprocessors. It reflects a general
recent trend in electronic device development to combine the logic blocks
and interconnections of traditional FPGAs with embedded microprocessors and related
peripherals. FPGA is especially popular in custom-made or low-volume systems, since it is
re-programmable providing easy bugs fixing and short time to market. Among providers
of CPLDs and FPGAs are Altera [16] , Xilinx [17] , ATMEL [18] or Lattice Semiconductors
[19] .

1.5 Universal Measurement System with Web Interface (UMSWI)

 Responding to a demand from European Organization for Nuclear Research (CERN),
Creotech Ltd. [20] high-tech company produced a prototype of modular embedded
measurement device. In the configuration provided, it is an ARM based microcomputer with
data acquisition daughterboard. It consists of 3 modules: main board, ARM computer and
recorder. The most important parameters and features of the hardware are presented
in Table 1.

Module
name

Module
application

Module’s components
Size
[mm]

Photo

Main
board

Hosts power
supply,
peripherals
and other
modules

Switched-mode Power
Supply
Graphic controller
Sound controller
I2C interface
Peripherals: USB,
RS232, Ethernet, output
for built-in LCD-TFT and
for VGA monitor

100x80

ARMputer Single
Board
Computer

Processor: ARM9
(AT91RM9200) [45]
128MB SDRAM
Ethernet interface 10/100
Mbit
FLASH 8MB
SD/MMC reader,
Interfaces: 2 x Serial
ports, 2x USB hub and
device

60x70

Recorder Acquisition ALTERA Cyclone I FPGA
[21]
2 x fast, 105MS/s. 10 bit
ADCs [22]
SSRAM – 128K x 32 b
[23]

100x80

Table 1 Hardware components of UMSWI

 Universal Measurement System with Web Interface

Maciej Lipiński 17

 The device is meant to be a measurement instrument for High Energy Physics
i.e. used in accelerators for diagnostics. However, the number of possible application is far
greater, alternatively UMSWI can be used for data acquisition in any dangerous or hard-to-
reach place, as a remote monitoring system of industrial parameters, reconfigurable
measurement system or an element of distributed measurement system .
 In such places as accelerators, measurements are done remotely due to the possible
radiation danger. Once settled in the measurement location, the instrument is operated from
a safe place. Therefore, development of a control system which enables remote
management of the device and remote data acquisition was necessary. The device is
equipped with Ethernet peripheral to enable remote control via Ethernet connection. Since
Web User Interface (1.1) seems to be the new trend in measurement instruments’ remote
control, which demands the least requirements on the client and is a very flexible solution,
it was decided that such interface should be developed. Remote control using Web User
Interface is especially suitable for operation at CERN, since it does not require dedicated
client software. Due to the fact that four different operating system platforms are used at
CERN (Linux, Windows, Mac and UNIX), it would be very time-consuming and expensive to
create client’s software for each of them. Web User Interface is client’s platfrom-independant.
 In order to enable UMSWI to be a part of a larger system (i.e. Tango [24]
or EPICS [25]) or to take part in experiments where measurement instruments are
controlled with applications such as LabView or MatLab, more “traditional” control is needed,
therefore Remote Measurement Interface (1.1, first category) was required to be
implemented.
 The author was given an opportunity to choose and adapt embedded operating
system, develop a prototype control software, FPGA logic and interfaces for the provided
hardware.

1.5.1 UMSWI hardware architecture and dataflow
 Design and development of control system for hardware requires thorough
understanding of architecture, data flow and limitations of the provided hardware. Figure 7
presents general overview of UMSWI’s architecture and dataflow.

Figure 7 UMSWI architecture and dataflow

 Universal Measurement System with Web Interface

Maciej Lipiński 18

 The acquired signal is converted by 10 bits Analog-to-digital Converters (ADCs) and
saved into Synchronous Static Random Access Memory (SSRAM). The acquisition
is controlled by the Field Programmable Gate Array (FPGA). Alternatively, instead of saving
data in SSRAM, it can be directly read by FPGA, computed and later saved in SSRAM. It is
also possible to save data in SSRAM and read in FPGA simultaneously. Once the acquisition
has finished, data can be read by the processor. Readout process is managed by FPGA and
controlled by microprocessor. Data processing can be performed in FPGA logic as well as in
application running on microprocessor. From the processor data is transported to the user by
the Ethernet or can be displayed locally on LCD/VGA monitor.
 Hardware Architecture of acquisition module is described in details in Appendix A: 2.1 .
It was particularly important to familiarize with acquisition module, since its layout has
the greatest influence on architecture and design of UMSWI control system.

1.5.2 Embedded Operating System
 The UMSWI was intentionally provided with a powerful ARM9 microprocessor
to enable usage of embedded operation system. In fact, the microprocessor (AT91RM92000)
is very popular among embedded systems. It is, of course, possible to develop applications
directly for this processor. However, much better and more popular solution is running
embedded operating system. It makes the system flexible and allows re-use or adaptation
of already existing solutions. A review of embedded operating systems and general
description of Embedded Linux architecture (Linux was chosen to be the operating system
on UMSWI) is provided in Appendix A: 2.1 and 3.1

1.6 The Thesis Project Genesis and Objective

 Following a demand by High Energy Physics for a small remotely controlled diagnostic
measurement device to be used in accelerator tunnels, UMSWI hardware was created.
The hardware was designed following modern trends in measurement instrument
development and having in mind broader applications (than accelerator diagnostics). Such
universal and trendy hardware needed equally featured control system† which could not be
provided by Creotech Ltd. The UMSWI control system’s development required to
be preceded by research to establish current trends, tendencies and technological
possibilities in the field - a task in line with interests, knowledge and experience of the author
who decided to take this challenge, thus this Master Thesis project was started.
 The goal of this Master Thesis is the utilization of commercially available hardware
(Creotech Ltd.) to create an autonomous, universal measurement system with remote
Web-based control.

1.7 Requirements

 An employee of European Organization for Nuclear Research (CERN), who has
experience in the area of exploitation and usage of commercial measurement instruments,
presented demand for a measurement device with the following interfaces:

• Web User Interface (WUI) –providing web-based Graphic User Interface to enable
the user to remotely control UMSWI, perform data acquisition and display acquired
data in graphical form.

† A collective of systems, applications, interfaces, etc. that were designed and developed by the author
is called in this thesis control system of UMSWI .

 Universal Measurement System with Web Interface

Maciej Lipiński 19

• Remote Measurement Interface (RMI) – implementation of one of the standard
measurement protocols to allow remote control from measurement applications level
(i.e. Matlab, LabView)

The device was required to enable functionality of simple digital oscilloscope and spectrum
analyzer with further possibility of other measurement system implementations.
 Instalation of a reasonably powerful microprocessor in the provided device was
intended for usage of embedded operating system, therefore an operating system should be
chosen and developed.
 The main limitations to this project were imposed by the provided hardware.
The following measurement system features were determined:

• Signal source – two digital ADCs determines number and type of signal source
• Sampling speed – determined by the speed of ADCs:100MHz
• Sample maximal length – determined by the SSRAM memory size (128k of samples)
• Communication: Ethernet, USB, RS-232

 Universal Measurement System with Web Interface

Maciej Lipiński 20

2. Architecture

 The architecture of UMSWI’s control system was created dividing the system into
the following components

• Operating system
• FPGA logic
• Web User Interface (WUI)
• Remote Measurement Interface (RMI)
• Connotation between Remote Interfaces and FPGA logic

 The division was determined by hardware architecture (1.5.1), requirements (1.7)
and technologies (Appendix A: 2) needed to develop each part of the system. General
architecture of entire system was created before design and implementation of component
(Figure 8) .

Figure 8 General UMSWI architecture

 According to the requirements, the UMSWI control system is based on an embedded
operating system. Such solution enables high level of flexibility which was decided to be
utilitized to the benefit of the system’s flexibility, robustness, simplicity of further extensions
and modifications. The architecture and design of the entire system and each component
were prepared having in mind reusability, extendibility and universality.
 Each of the required interfaces (WUI & RMI) is placed in the embedded operating
system environment. Both interfaces need to communicate with FPGA logic, therefore
a common hardware-software communication layer can be provided. The layer is designed
according to operating system rules and adjusted to underlying hardware specification.
It provides communication with FGPA logic on various levels of abstraction to enable
creation of additional interfaces and control of different FPGA logic or even different
hardware

 Universal Measurement System with Web Interface

Maciej Lipiński 21

 Remote Measurement Interface (RMI) needs to implement standard interface which
can be connected to (on the physical level) and understood (on the abstract level) by
third-party measurement applications running on the remote PC. Therefore the client
application does not influence the system’s architecture, unlike in the Remote User Interface
(RUI). In RUI, depending on the technology choice, the application running on the remote PC
can be either an integral part of the UMSWI control system, or can have substantial influence
on the system’s architecture.
 The FPGA logic provides logic to control acquisition process and communication
interface to exchange data between ARM and FPGA. The communication interface is
universal to enable control of custom-made acquisition control logic (i.e. extended
to implement computation algorithms like FFT).

2.1 Embedded Operating System – Linux

 The choice of embedded operating system was preceded
by background research on available solutions suited for
AT91RM9200 architecture. The review is summarized
in Appendix A: 2.1 .
 All the proprietary solutions were discarded since they
increase the costs of UMSWI and bring licensing issues
in further extensions or modification of the system. Furthermore,
the number of users of proprietary embedded operation systems
is smaller and the exchange of information between them not as
public as in the case of open source embedded operating
systems. Therefore, the choice of non-proprietary embedded
Linux, the most popular among embedded open source
operating system with the strongest developer’s support . There
is a vast number of books, articles and forums describing it’s usage and development
on ARM mikroprocessors: [26, 27, 28, 29]. The author of [27] in the chapter “Reasons for
Choosing Linux” as well as the author of [28] in the chapter “Why Embedded Linux” devote
few pages pointing out advantages of using Linux. Among others are: “availability of code”,
“hardware support”, “available tools”, “Community support” and many others. Running Linux
enables using a great number of open source programs and support of a strong and
numerous community of Linux and embedded Linux developers. It was decided not to use
any of the open source Embedded Linux distributions to ensure systems wide portability.
If the system was developed for particular embedded Linux distribution, using the UMSWI’s
control system on the architecture not supported by the chosen distribution might pose
a problem. Therefore, “vanilla” kernel was used making UMSWI control system potentially
usable on any distribution. “Vanilla” kernel is the Linux kernel version maintained by Linux
Torvalds (the creator of Linux) himself. It servers as a reference point for all the distributions
and ports of Linux. Many Linux operating system vendors modify the kernels of their product,
i.e. to add support for drivers and features not officially released as stable. All the embedded
Linux distributions are include versions of “vanilla” kernel.

2.1.1 Embedded Linux System for UMSWI
 The architecture of Embedded Linux System for Universal Measurement System with
Web Interface follows general rules of embedded Linux system architecture which are
described in details in Appendix A: 3.1 . The architecture is determined by three factors :

• Hardware restrictions (storage size, RAM, peripherals),

Figure 9 UMSWI
architecture - Linux

 Universal Measurement System with Web Interface

Maciej Lipiński 22

• System requirements and applications,
• Potential portability to other architectures.

 One of the main hardware restrictions in Embedded Linux Systems is storage size.
Frequently, the biggest challenge for embedded developers is to fit the system into limited
memory space. 8 MB of flash memory provided by UMSWI is more than sufficient to hold
embedded Linux image with compiled kernel and root file system providing basic utilities.
It turned out that the flash memory is also sufficient to hold all the utilities of UMSWI.
However, it was decided to store UMSWI utilities on the MMC/SD memory card. Actually,
UMSWI utilities are stored in both locations (root file system on flash memory and MMC/SD).
It allows the system to be much more flexible. If the system is to be ported to an architecture
with limited flash memory, MMC/SD can be used. If MMC/SD slot is not provided, UMSWI
utilities are read from flash. On the startup, the system tries to find UMSWI utilities
on MMC/SD card in the first place. If it fails, utilities stored in flash are used. It makes
the system robust and enables easy upgrades. The user upgrades or modifies UMSWI
utilities stored on MMC/SD. If the upgrade fails, or the user’s modifications are erroneous,
the system is still useful provided the MMC/SD card is not inserted.
 The Low-level interface is appropriately ported to mach the AT91RM9200 architecture
and ARMputer peripherals.

2.2 FPGA logic

 FPGA logic architecture is composed of two
parts: Communication Logic (CL) and Acquisition Management
Logic (AML). Communication Logic is used to exchange information
between Acquisition Management Logic and Remote Interfaces
(in principle: operating system user space):

• acquisition parameters
• state of acquisition
• measurement data

Acquisition Management Logic is meant to manage data acquisition,
in particular:

• collecting data from ADCs
• storing data in SSRAM (during data acquisition)
• reading data from SSRAM (during data readout)
• data processing
• trigger management and detection

 Such architecture makes it easier to further extend the system (i.e. with different data
processing algorithm) or adapt it to different hardware. Thanks to the separation, in case
of system extension or adaptation, the main modifications are performed in the Acquisition
Management Logic, while the communications remains unchanged or requires very small
modifications.
 The Acquisition Management Logic is controlled, through Communication Logic,
by the user. The control includes starting/stopping the acquisition and determining
the acquisition characteristics (parameters). The parameters were determined studying
operation and control of an oscilloscope:

• Sampling time (ts) – the minimum sampling time (tsmin) is determined by ADCs’
sampling frequency (100MHz), sampling time can be a multiple of tsmin only,

• Record length (l) – number of samples stored in SSRAM after trigger. Maximum value
of record length (lmax) is limited by SSRAM size (128K 32bit-words),

Figure 10 UMSWI
architecture -

 Universal Measurement System with Web Interface

Maciej Lipiński 23

• Delay time (td) – the interval between trigger detection and start of record length
counter,

• Trigger source (SRC)– there are three types: external signal, signal from ARM9
(user), signal level.

• Trigger level,
• Trigger edge,

 It was decided to store each of the parameters in FPGA as a register mapped into
separate address of ARM9 microprocessor memory space. Therefore, the task
of Communication Logic is to:

• recognize the operation (read/write),
• decode the address presented on the address bus ,
• read data from ARM data bus and write it into appropriate register in case of ARM

write operation,
• read data from appropriate register and present it on the data bus, in case of ARM

read operation,
 Acquisition Management Logic updates the registers with acquisition state or measured
data and controls the content of other registers. Such architecture allowed to solve
the problem of two clock domains described in details in Appendix A: 1.1.
 Another hardware obstacle, which influenced FPGA logic architecture (described
in Appendix A: 1.1), is the fact that the memory address space mapped to FPGA by ARM
is smaller than SSRAM size. Therefore, the entire memory space of SSRAM is mapped to
one FPGA register of one word size (16bits) called readout register. This register is, in turn,
mapped to certain address in ARM address space. Each time the processor reads readout
register, new data from SSRAM is provided by Acquisition Control Logic. Because data width
of bus between ARM and FPGA (16bits) is twice smaller than SSRAM world (32bits), it takes
two readout operations for ARM read entire SSRAM word. The FPGA logic architecture
is presented in Figure 11.

Figure 11 Acquisition and readout control and dataflow

 Universal Measurement System with Web Interface

Maciej Lipiński 24

2.3 Hardware-software communication layer

 The hardware-software communication layer is
understood as an interface between Linux user space and
FPGA. Its main purpose is to provide communication
between Interfaces and FPGA. However, the configuration of
FPGA (sending a binary stream to FPGA) is also included
into the layer’s tasks.
 Since Linux is used as operating system, there are two
possible approaches to interface hardware connected to
microprocessor and mapped into memory address space:

• Mapping appropriate address in User Space –
slower, easier to implement,

• Writing Linux Device Driver to access appropriate
address in Kernel Space – faster and much more
efficient for data transfers, enables interrupt
implementation, not a trivial task.

The communication and configuration were decided to be approached separately, choices
of the appropriate technique for each of them are discussed below in separate subchapters.
The result is summed up in the Figure 13.

2.3.1 FPGA configuration
 In normal operation of UMSWI, FPGA configuration is done during the startup
of the system. Reconfiguration during system operation is only done in the development
phase. Therefore, the speed of configuration process is not crucial and it has been decided
to use simpler and faster to develop User Space mapping to implement FPGA configuration.

2.3.2 Communication between ARM and FPGA
 The communication between ARM and FPGA is crucial for system’s operation and
is one of its basic components. Up to 265 Kb of measurement data needs to be transferred
from FPGA. To comply with the intention to create universal and extensible system,
the communication is provided on two levels of abstraction:

• Interface suited to the implemented Interfaces and Acquisition Logic
• General interface enabling to extend Acquisition Logic or use the existing Logic

in a non-standard way.
Such solutions enables flexibility on both sides of the communication layer. It is possible
to extend the already existing applications (alternatively, create new applications) to use
the same Acquisition Logic in non-standard way or to use modified or entirely different
Acquisition Logic.
 The communication layer along with FPGA configuration are the only software parts
of the UMSWI control system which are directly hardware dependent. While the FPGA
configuration is a simple operation, communication layers is more advanced and its
architecture needed to be created having in mind easy porting to other hardware
configurations. Therefore, it was decided to create a Linux Device Driver [30] with
architecture clearly divided into abstract and physical layer. Such separation enables
the driver to be easily portable to other hardware configuration and also makes it easier
to extend the driver with additional functionality.

Figure 12 UMSWI
architecture - driver

 Universal Measurement System with Web Interface

Maciej Lipiński 25

Abstract layer
 Abstract layer of the driver is responsible for communication between the driver and
user space (in which all applications are run) and implements the driver’s logic. It is hardware
independent.

Physical layer
 Physical layer implements the communication between driver and hardware as well
as hardware’s initialization.

Figure 13 Communication between FPGA and ARM

2.4 Web User Interface

 Web User Interface is clearly divided into UMSWI
Management Interface (UMI) and Oscilloscope & Spectrum
Analyzer Graphic User Interface (O&SA GUI). The former allows
configuration of UMSWI’s parameters such as IP address,.
The later is meant to perform measurement and present
the results in graphical form. Additionally, information about
system (manuals) are provided by the interface.
Since Oscilloscope and Spectrum Analyzer GUI is much more
demanding (in terms of development effort and system

requirements), sophisticated and crucial to the system, it was
decided to make the choice of technologies-to-be-used
according to its requirements and adjust the implementation
of UMSWI Management Interface to the chosen solutions.

2.4.1 Oscilloscope and Spectrum Analyzer
 Architecture of Web User Interface depends greatly on chosen technologies. In general
three components of the interface can be distinguished:

Figure 14 UMSWI
architecture - WUI

 Universal Measurement System with Web Interface

Maciej Lipiński 26

• Graphic User Interface (displayed in the client’s browser)
• Web Server
• Interface between Web Server and hardware (in particular, Linux Device Driver)

For each of the components, a decision of technology-to-be-used needed to be taken
considering choices of technologies for the other components. A review of possible solutions
for each of the components is included in Appendix A: 2.3, 2.4 and 2.5
 The choices were made taking into account two criteria: simplicity and limited
resources. Simplicity of solutions is important for the development and further extensions
to the system. Resource limitations:

• Processor speed
• RAM size

Simplicity:
• the less tools need to be cross-compiled the better – some tools, applications are not

trivial to port to embedded architecture
• less sophisticated solutions are easier to test and debug

 To move much of the workload (i.e. graphic generation, user interface handling) from
the embedded system to the client PC (far more powerful unit), Java Applet technology was
chosen for implementation of Web Graphic User Interface. Java Applet is a web application
which is downloaded and executed in the client’s browser. Since the interaction with
the client is managed by the applet locally on the client’s machine (unlike in PHP where
client’s interaction is handled by the server), network traffic can be reduced
by communicating with the server only during hardware interfacing. Therefore, the role
of the server is limited to simply passing information/data from/to the driver. This eliminates
many server requirements imposed by other technologies (i.e. support for PHP).
 The server’s capabilities influence the choice of technology used to interface hardware
and vice versa (hardware interface impose requirements on the server). If the Web Server
embeds scripts interpreter (i.e. PHP) or enables Java Servlets, hardware (through Linux
Device Driver) can be accessed directly by opening its file representation. However, since
the server’s requirements from the Web Graphic Interface (web applications) were
minimized, it is reasonable to choose hardware interface with minimum Web Server’s
demands as well. Such choice enables to use the simplest Web Server. Therefore, Common
Gate Interface (CGI) was chosen as an interface between Web Server and Linux Device
Driver (which implements /proc file system – very convenient for CGI access)
and consequently the simplest and smallest (9K, [29]) Web Server provided by BusyBox
could be used. The choice to use CGI in UMSWI is supported by the following advantages:

• CGI is well known, well developed and it is still being used by many web pages
and applications (ex. hotmail.com),

• It is implemented by most of web servers, does not involve any additional tools to be
cross-compiled,

• It allows to execute “CGI scripts” written in many different scripting languages as well
as compiled programs,

• Any distribution of Linux enables writing scripts for CGI interface, it means that
as long as the most basic version (even very old) of Linux is ported for a platform,
and the most basic HTTP server is available, CGI can be used. As a consequence,
using CGI makes the whole system very flexible and platform independent.

Except for the communication with the driver, CGI scripts can be used to manage UMSWI
control system by performing system calls (i.e. to configure Ethernet Interface)
or starting/stopping applications (i.e. SCPI Server). Choosing BusyBox Web Server provides
portability, since such server is available for majority of embedded Linux systems.
The choice of technologies is summarized in Figure 15.

 Universal Measurement System with Web Interface

Maciej Lipiński 27

Figure 15 Choice of technologies for Web Interface of UMSWI [31]

 Once the choice of technologies was done, the Web Interface architecture could be
created (Figure 16). The Web Server stores UMSWI website and Java Applet binaries, and
provides Common Gate Interface. Once the web site embedding Java Applet is opened,
the applet is downloaded to the web browser and executed. The applet communicates with
hardware (Linux Device Driver) through CGI interface. CGI is also used by the UMSWI
configuration web page.

Figure 16 Oscilloscope and Spectrum Analyzer Web architecture

2.4.1.1 Java Applet architecture
 One of the system patterns which helps in application design on the abstract,
architectural level is Model-View-Controller, described in details in Appendix A: 3.2. It is
a language-independent pattern which is widely used. It was chosen because it allows easier
and independent modification of visual appearance or underlying business rules. Thus,
it enables easy extensibility and reusability. It divides the application into three logical
components: model, view and controller making it easy to customize or modify each part.
An architecture of UMSWI’s applet organized according to MVC paradigm is presented in
Figure 17.

 Universal Measurement System with Web Interface

Maciej Lipiński 28

Figure 17 UMSWI’s architecture according to MVC

 Model represents Oscilloscope and Spectrum Analyzer, it reflects their state.
Thus, Model communicates with the hardware and changes its settings. View is responsible
for displaying data provided by Model. Control panel, which enables to change the Model,
is also displayed by View. Any changes made by user on the control panel are detected by
the Control component which updates the Model. The control panel enables to adjust two
kinds of settings:

• Hardware settings – parameters which can be used to control acquisition logic
(sampling time, trigger delay, trigger source, record length, trigger level),

• Display settings – parameters which control the way data is displayed and whether
it is displayed (Volts/Div, Time/Div, Freq/Div, enable chan1/chan2),

It also enables control of the device state (start/stop acquisition) and display of the device
parameters

2.4.2 UMSWI Management Interface
 The UMSWI Management Interface is kept simple on demand of CERN’s employee
who required the device. It includes only the most necessary configuration:

• IP address (setting current and saving default)
• Mask (setting current and saving default)
• Port of SCPI Server
• SCPI Server on/off

 The default IP address is saved in the memory and the system is started with such
address. The possibility of setting of IP address or SCPI Server Port is important when
the system is integrated into a Local Network Area (LAN) infrastructure or when many
UMSWIs create distributed measurement system. It was decided to enable starting
and stopping SCPI Server to save UMSWI’s resources when SCPI Server is not used.
 Common Gate Interface scripts allows to perform the above-mentioned configuration.
It would be also possible to use Graphic User Interface developed as Java Applet to do

 Universal Measurement System with Web Interface

Maciej Lipiński 29

the configuration. However, it was concluded that Java Applet is too heavy
weighted-technology for such trivial task. Therefore it was decided to prepare simple
webpage and use Java Script for data verification and calling CGI scripts. The architecture
of UMSWI Management Interface is very similar to Oscilloscope and Spectrum Analyzer’s
architecture. Figure 18 presents architecture of entire Web User Interface.

Figure 18 Web User Interface architecture

2.5 Remote Measurement Interface

 Remote Measurement Interface (RMI) is described in this
thesis as an interface which enables UMSWI to be controlled
remotely by measurement applications (i.e. LabView, Matlab).
The medium to be used, is determined by the UMSWI’s hardware:
Ethernet. An in-depth investigation was conducted to choose
an appropriate interface for implementation. A review of possible
solutions can be found in Appendix A: 2.2 The following
requirements were taken into consideration:

• Well defined and widely used,

• Modern,
• Simple,
• Physical layer: Ethernet.

 It seems that most of the measurement instrument vendors (i.e. Agilent, Tektronix, HP)
offer new high-tech devices with many remote measurement interfaces. However, Standard
Commands for Programmable Instruments (SCPI) seems to be the most widely

Figure 19 UMSWI
architecture

 Universal Measurement System with Web Interface

Maciej Lipiński 30

implemented. The medium of data transfer has changed from GPIB or RS to Ethernet
and USB, however the SCPI standard is still alive. What is more, SCPI can be used by most
of the popular measurement applications (like LabView) and applications which can connect
with measurement instruments to retrieve measurement data(i.e. Matlab). Therefore, it was
decided to implement Standard Command for Programmable Instruments (SCPI).
 The SCPI standard is shortly described in Appendix A: 3.3. The standard defines
command’s structure and syntax but does not specify underlying hardware or software
solutions. Figure 20 presents example SCPI command and its architecture.

Figure 20 SCPI example command

In principal, an input to the RMI application is a string of characters consisting of a command
(message), or a set of commands separated by (;)semi-colons. Each command message
is composed of a sequence of mnemonics separated by (:) colon and an argument. The path
determined by mnemonics unequivocally determines what action shall be performed.
 Remote User Interface needs to be an application which implements TCP/IP socket
server (called SCPI server in this thesis), it accepts and responds to the request from
measurement application clients. The architecture of SCPI Server is presented in Figure 21.
Interpretation of SCPI commands consists of two phases: parsing and decoding.
It is followed by command execution using Hardware Interface. Parsing is device-
independent. It depends on the syntax which is common for all the SCPI command. After the
command has been divided into mnemonics and argument, the command must be decoded
and executed. The decoding depends on the commands dictionary (which is based on
the controlled hardware capabilities) Execution is device dependant. It needs to be
implemented for the particular device. This is why the architecture of SCPI server is modular.

Figure 21 SCPI server architecture

SCPI standard strictly determines server to the following messages:

1. Device settings information if a query is inputted,
2. Measurement data, if data acquisition is turned on.
3. Error codes (a digit) if an error occurs.

To provide user with more information about RMI application performance and detailed error
messages, a logfile Interface is used. All the messages about performance of each
component of the application and detailed error messages are written to a file.

 Universal Measurement System with Web Interface

Maciej Lipiński 31

2.5.1 A Note on SCPI Complience
 When implementing SCPI command interface two approaches are possible:

• Full SCPI compliancy
• SCPI “look and feel” commands

Full SCPI compliancy requires to follow strictly SCPI Standard documentation which defines
what certain commands should do, what commands to include for certain instrument classes,
etc. Often, full SCPI compliancy is not implemented. Instead, by giving the user the “look and
feel” of SCPI, the user will be immediately familiar with the equipment’s control.
This approach is extremely common amongst instrument manufacturers. Studying
Tektronix’s [7] , RIGOL’s [6] and other companies’ programmer’s manuals of digital
oscilloscopes, it was noticed that some of the SCPI commands found in the manuals do not
comply with SCPI standard but seem useful and reasonable, while mandatory SCPI
commands are not implemented because they are not necessary.
 The “look and feel” approach was taken in the implementation of SCPI standard for
Measurement Interface of Universal Measurement System.

2.6 Summary

 Figure 22 summarizes the architecture of UMSWI. For each of the required interfaces
(measurement and web interface) a server is provided. Remote Measurement Interface
server implements Standard Command for Programmable Instruments (SCPI),
thus it is called SCPI Server. The Web Server is provided by Busybox [32] . SCPI and WEB
servers communicate with hardware (in order to control acquisition process and retrieve
measurement data) using Linux Device Driver. Since SCPI server is developed from
scratches, it implements communication with Linux Device Driver. Web Server needs
Common Gate Interface (CGI) to communicate with Linux Device Driver.

Figure 22 UMSWI architecture [31]

 A client to Remote Measurement Interface Server, in principle, is any measurement
application (i.e. LabView, Matlab) which enables control of remote instruments via TCP/IP
using SCPI commands. A client to Web Server is a web browser with Java Script and Java

 Universal Measurement System with Web Interface

Maciej Lipiński 32

Applet enabled. Java Applet requires Java Virtual Machine installed on the client.
All the UMSWI-related software is stored on SD/MMC card enabling easy update
and modifications.
 A careful choice of technologies and well-thought planning resulted in very portable,
flexible and easily extensible software architecture. The requirements towards Linux utilities
are very basic. The HTTP server needed for the system to operate is provided by Busybox
(used by most of the embedded Linux distributions) and only adds 9K, which is not much
ever for the Linux distributions with strong memory constraints. In principle, the HTTP server
with CGI interface is the only requirement for Linux distribution to run the system.
 The only hardware dependant parts of the system are: Linux Device Driver
and application which configures FPGA. Only these two components need to be changed
to run the system on different hardware.
 Application of MVC architecture in applet should result in easy extensions or changes.

 Universal Measurement System with Web Interface

Maciej Lipiński 33

3. Design and Implementation

3.1 Development environment

 The Universal Measurement System with Web Interface (UMSWI) was being
developed for 2 years. It took considerably long time to establish the most convenient
development environment, tools and workstation.
 A typical cross-development environment according to [26] is presented in Figure 23.
A host is a development workstation, a PC or Laptop, running Linux distribution.

„Webster's defines nonsense as "an idea that is absurd or contrary to good
sense." It is my opinion that developing embedded Linux platforms on a non-
Linux/UNIX host is nonsensical.” [26]

A target is referred to embedded hardware platform (UMSWI). Thus, native development
is understood as building of applications on and for the host system. On the contrary, cross-
development means the compilation and building of applications on the host system that are
supposed to run on the embedded system.

Figure 23 Layout of cross-development environment [26] .

 The configuration presented in Figure 23 was used during most of the development
of UMSWI. In the final stage of the development, setup was extended to the one presented
in Figure 24 . The host development system was connected to a target board via RS-232
and Ethernet. A serial terminal program (minicom) was used to communicate with the target
board via RS-232. The u-boot bootloader, which is stored in the target’s flash memory, was
started automatically after the power-up. It is a very powerful tool which enabled the image
of Kernel along with root filesystem to be downloaded to target board using TFTP protocol
over Ethernet. Once downloaded the image was run. During development, NFS root mount

 Universal Measurement System with Web Interface

Maciej Lipiński 34

for target board was used. Linux ran on the target board mounted the root filesystem located
on the host over NFS. There are many advantages of such a solution :

• Root file system is not size-restricted,
• Any changes to application under development are available to target system

immediately, the same files are available to target and host system simultaneously,
• Kernel can be debugged and booted before developing proper root file system,
• It makes development much faster and easier.

 A second development computer running Windows XP was used for development
and debugging of VHDL design of FPGA logic. This computer is called FPGA development
and debugging workstation. Both workstations were connected using NFS file system.
It made file exchange very convenient. Altera Quartus II software tool was used
for development and debugging of FPGA logic. The debugging was performed using
Quartus II tool called Signal Tap II Embedded Logic Analyzer and Byte Blaster II cable.
Signal Tap II is a system-level debugging tool which enables to capture and display real-time
signals in any FPGA design. Signal Tap II connects via Byte Blaster II download/upload
cable with JTAG connection to device under test. The Windows workstation was also used
for website development and partly for Applet development with Eclipse. The Eclipse KDE
was run on both workstations.

Figure 24 UMSWI development setup

 The setup (applications) used for development of Universal Measurement System with
Web Interface is summarized in Table 2. It was learnt painfully by the author that the most
crucial was the choice of Linux distribution for the workstation. During the first year
of development SUSE10.2 Linux distribution was used. Under SUSE, few cross-compilation
toolchains were tested, e.g. Buildroot and Dan Kegel's crosstool. These toolchains were
troublesome to build and not satisfactory in embedded Linux development. Many books
about Linux embedded systems, i.e. [33] and [34] , mention that Debian distribution is very
convenient for embedded system development. Therefore, Debian Linux was installed on
the development workstation. It was a very positive change for the UMSWI project
development. A considerable number of packages, including ARM development tools
(i.e. cross-compilation toolchain), is available for Debian (and Debian-related Linux
distributions). The package installation is easy and fast. A cross-compilation toolchain
provided as a Debian package by Free Electrons [35] was used during development
of Linux, fpga driver and SCPI Server. The toolchain is based on uClibc library popular
among embedded Linux systems developers. The usage of uClibc library allows to save
memory space (details in Appendix A: 3.1).

 Universal Measurement System with Web Interface

Maciej Lipiński 35

UMSWI part tool/KDE Operating System

Embedded Linux

Debian Linux

Linux Device Driver

Debian Linux

SCPI Server

ARM cross-toolchain
(Debian package)

Debian Linux

Java applet

Eclipse Windows XP/Debian Linux

Website

- Windows XP

FPGA logic

Alera Quartus II Windows XP

Table 2 UMSWI development tools

3.2 Embedded Linux Operating System

 The Linux, which is used on UMSWI, is based on TWarm Project [36] . Since
the ARMputer module and TWarm board are very similar, the hardware configuration
and ports could be applied to Embedded Linux System on UMSWI (with necessary
modifications).

3.2.1 Components
Root filesystem
 The root file system is based on Filesystem Hierarchy Standard (FHS)[37] . The FHS
was trimmed, removing the directories used to provide an extensible multiuser environment,
such as: /opt/, /home, /mnt and /root. Only the essential directories were left.

Figure 25 root filesystem hierarchy

Kernel
The main component of the Embedded Linux is the kernel. Kernel used in UMSWI is based
on TWarm Project kernel. It is a 2.6.19 “vanilla” kernel [38] patched with AT91 Linux 2.6
appropriate patch [39] with necessary changes to Ethernet PHY.

 Universal Measurement System with Web Interface

Maciej Lipiński 36

Busybox
Busybox 1.00 was used to accommodate the root file system with necessary Unix tools
which are all symlinks to a single Busybox executable.
C Library
The library was provided by the cross-compilation toolchain which links the cross-compiled
applications against uClibc, instead of GNU C library (glibc). uClibc is a special C library
for embedded systems which is very popular and supports many platforms (i.e. ARM, MIPS,
PPC). It provides most of GNU C library functionality. Most of the applications that can be
compiled against glibc, should also compile and run using uClibc. It substantially reduces
embedded systems’ size. Only the most necessary library files where copied to the root file
system.

3.2.2 Configuration
Kernel
The most important features of kernel’s configuration (Figure 27) include:

• Initial RAM fylesystem and RAM disk (initramfs/initrd) support
• Initramfs enabled with source from a give directory
• Ethernet (10 or 100Mbit) for AT91RM9200 support
• Configured for AT91RM9200 processor (ARCH_AT91RM9200) with support

for AT91RM9200-DK Development Board and AT91RM9200-EK Evaluation Kit
• Boot command: “mem=64M root=/dev/mem rw console=ttyS0, 115200” which means

o “mem=65M” – force usage of a specific amount of memory,
o “root=/dev/mem rw” – specifies root filesystem
o “console=ttyS0, 115200” – use serial port number 0 as output console device,

baund rate: 115200
• USB support enabled
• Ext2 and VFAT file system support
• /proc file system support
• NFS boot support (during development)
• AT91 SC/MMC Card Interface support

Busybox
The most important of Busybox’s configuration (Figure 26) include:

• Build Busdybox as a static binary (no shared libs)
• Support reading inittab
• httpd Web Server enabled
• Support for Common Gateway Interface (CGI)
• ifconfig enabled with “hw” option
• telnetd, tftp enabled
• support for mounting NFS file systems

Figure 26 Busybox configuration Figure 27 Linux kernel configuration

 Universal Measurement System with Web Interface

Maciej Lipiński 37

3.2.3 System boot and startup
 Booting sequence of Embedded Linux implementing initrafs is presented in Figure 28 .

Figure 28 Booting sequence with initramfs [40, page 73]

Bootloader
At the startup, the bootloader is executed automatically from a given location, usually with
very little space. Therefore, 2 stages are implemented [29] :

1st stage bootlader – offers minimum functionality and is meant to access and execute
the 2nd stage bootloader on a bigger location,

2nd stage bootlader – offers the full bootloader functionality, it can be even an operating
system itself.

According to [28] the important features of bootloader include:
• Support for embedded hardware
• Storage footprint
• Support for networking
• Support for flash booting
• Console UI availability
• Upgrade solutions availability
• Argument passing from the boot loader to Linux kernel
• Memory Map
• Calling PPROM routines from the kernel

Three bootloaders suitable for ARM-based embedded systems [29] :
• Das U-Boot: Universal Bootloader from Dentx Software [41]
• RedBoot: eCos based bootloader from Red-Hat [42]
• uMon: MicroMonitor general purpose, multi-OS bootloader [43]

In TWarm project, Darrell Harmond’s bootlooader [44] (with necessary modifications) is used
as a 1st stage bootloader (called loader in this thesis) and Das U-boot (with necessary
modifications) is used as 2nd stage bootloader (called u-boot in this thesis). During
the development phase, both loaders were used like in TWarm project. U-boot provides
many useful utilities, it allows to download kernel image with Trivial File Transfer Protocol

 Universal Measurement System with Web Interface

Maciej Lipiński 38

(TFTP), it passes to kernel boot parameters and PHY parameters (i.e. MAC address), it also
enables different kinds of booting (from network, MMC/SD card, etc). However, since it was
decided to boot the kernel and root file system from flash memory, it turned out that u-boot
is not necessary in the normal boot process of UMSWI, provided some modifications are
made in Linux start-up script, BusyBox’s configuration and Darrell Harmond’s bootloader.
 A tool enabling MAC address to be set from Linux (Networking Utilities
---> ifconfig/Enable option “hw” (ether only)) was added in BuysBox configuration and Linux
start-up script (/etc/inittab) was appended to set up MAC address. The loader was modified
to perform default Linux start after short delay and BusyBox start on request. Modified
loader’s menu in presented in Figure 29 . It was decided to leave the possibility of starting
u-boot, since it can be useful for further development and there is enough space in the flash
memory. However, a modification was made to the address in which the u-boot is started.

Figure 29 Modified loader’s menu

Userspace
UMSWI specific startup operations are done in three steps:
1. The MMC/SD card with UMSWI utilities is attempted to be mounted

in /usr/ARMscope/location. The /usr/ARMscope/ folder hold all the custom-made UMSWI
utilities. The mounting is done in /etc/init.d/rcS (Figure 30) system initialization script

2. /usr/ARMscope/start (Figure 32) script is called (in /etc/inittab) . This script is used for
the UMSWI utilities initialization and can be modified by the user easily. It starts
the following initialization (by calling appropriate scripts):
• Configures FPGA (config_FPGA script)
• Loads FPGA driver (load_driver script)
• Starts SCIP server (if option enabled)
• Sets the default IP (set_IP script)

3. httpd web server is started as “respawn” (/etc/inittab file,Figure 31)

Figure 30 /etc/init.d/rcS system initialization script

 Universal Measurement System with Web Interface

Maciej Lipiński 39

Figure 31 /etc/inittab file

Figure 32 /usr/ARMscope/start script

 Universal Measurement System with Web Interface

Maciej Lipiński 40

3.2.4 UMSWI utilities organization
 Tools and data which are used by UMSWI are stored in /usr/ARMscope folder in root
file system and on MMC/SD card. Its organization is presented in Figure 33 .

Figure 33 UMSWI utilities organization

FPGAconfig holds the .rbf file with FPGA logic configuration and a small application which
configures FPGA.
FPGAdriver holds FPGA Linux Device Driver compiled as a loadable module
scpi_server holds SCPI server application
www holds:

• the UMSWI website (in www/),
• CGI scripts (in www/cgi-bin/), two kinds:

o used in applet-driver communication (in www/scripts/oscilloscope/)
o used for system configuration (in www/scripts/systemConfig/)

• oscilloscope and spectrum analyzer applet (in www/oscilloscope/)
• data available on the website, i.e. Matlab scripts (in www/downloads/)
• images used on the website (in www/images/)

data holds information which needs to be stored between boots, i.e. default IP
start is a script which starts UMSWI utilities

3.3 Implementation of the FPGA logic in VHDL

 Data acquisition and readout are managed by Field Programmable Gate Array (FPGA).
The logic for FPGA was created in Very High Speed Integrated Circuits Hardware
Description Language (VHDL) using Altera Quartus II programmable logic device design
software.
 ADCs require low-jitter clock while ARM needs an independent clock for data readout.
Therefore there are two clock domains (see Appendix A: 1.1) and different parts of the logic
needed to be divided according to the clock domain affiliation (Table 3).

90 MHz 100 MHz

1. Communication with ARM

a. Control register
b. Readout

2. SSRAM control during processor readout

1. ADC control
2. SSRAM control during data acquisition
3. ONLINE data analysis
4. Data acquisition parameters

implementation (delay, length,
sampling time)

Table 3 FPGA logic design components according to frequency affiliation

 Universal Measurement System with Web Interface

Maciej Lipiński 41

In terms of clock domain, there is a clear division between FPGA<->ARM communication
(Communication Logic) and the rest of the logic (Acquisition Management Logic) which
is reflected in the architecture of entire FPGA logic. Unfortunately, SSRAM needs to be
operated with two different clocks depending on the state (acquisition/readout). General
design of FGPA logic is presented in Figure 34.

Figure 34 Data acquisition and readout design

3.3.1 Communication logic
Data acquisition is controlled by parameters described in chapter 2.2. Additionally,
the following parameters were added during development:

• Readout start address – enables to set the address from which data readout
is started. By default, readout starts from the address where first acquisition data
was stored (at the moment of trigger detection or after delay)

• Test mode – enables and controls tests of SSRAM.
Parameters returned by acquisition process:

• Status - indicates state of acquisition process,
• Start address pointer - indicates the first address in SSRAM where acquisition data

is stored. If delay time is zero, it is the address of the sample during which trigger
occurred. If delay time is greater than zero, it is address of the sample stored when
the appropriate delay time was counted down.

• Stop address pointer – indicates the last address of the acqusition data stored
in SSRAM.

The parameters are stored in FPGA registers which are mapped into ARM address space.
The readout register, which enables the acquired data to be transferred from SSRAM
to ARM, is also implemented as FPGA registered mapped into ARM address space
and managed by the same logic.
 Signals responsible for communication between FPGA and ARM are connected
on the ARM’s side to Static Memory Controller (SMC) which is a part of External Bus
Interface (EBI). SMC generates signals that control access to external static memory or
peripheral devices (up to 8 devices chosen by chip select lines NCSx). It is fully

 Universal Measurement System with Web Interface

Maciej Lipiński 42

programmable and can address up to 512 M bytes. On the FPGA side write/read controller
and address decoder are implemented to manage communication with ARM. Figure 35
presents datasheet schema which was used to connect ARM pins with FPGA pins.
It determines the type of communication.

Figure 35 Shows how to connect a 16-bit device without byte access on NSC2 [45]

The following signals enable communication between ARM and FPGA:

• D[15:0] – bidirectional data bus
• A[15:0] – address bus
• NSC0 – chip select number 0
• NWE – write enable
• NOE – output enable signal

The communication protocol is defined in ARM datasheet [45] and can be adjusted
by manipulating several parameters (Table 4).

Name Description Value SMC setting

Wait select
enable

Enables/disables wait states (additional cycles
during which NWE/NOE pulse is held low)

enabled WSEN =1

Number of
wait states

Defines the read (NOE) and write (NWE) signal
pulse length from 1 cycle to 128 cycles

1 NWS = 1

Data read
protocol

Standard or Early Read Protocol

Standard DRP = 0

Setup delay

Time between the moment when address is
available on the bus and write/read enable pulse is
set.

1 cycle RWSETUP = 1

Hold delay

Length of the read/write enable pulse

1 cycle RWHOLD = 1

Pulse delay

Time between the end of read/write pulse and
moment when data ceases to be valid on data bus

Table 4 Communication SMC settings

 Universal Measurement System with Web Interface

Maciej Lipiński 43

Graphic interpretation of the parameters mentioned in Table 4 is provided in Table 5 and in
Figure 36 .

Figure 36 Interpretation of NRD/NWR Setup, Pulse Length and NWR/NRD Hold parameters

Number of
Wait States Read Access Write Access

0

1

(1) Early Read Protocol

(2) Standard Read protocol

Table 5 Interpretation of Wait State parameter

In principle, the write/read controller is activated when Chip Select signal (NCS) goes low.
The address then is decoded. NWE and NOE signals are monitored, depending which signal
goes low, appropriate action is performed (reading/writing). The algorithm is presented
in Figure 37.

Figure 37 Communication Logic flowchart

 Universal Measurement System with Web Interface

Maciej Lipiński 44

 The choice of SMC parameters, which is presented in Table 4 , was made through tests
using Signal Tap II Embedded Logic Analyzer. Signal Type II is a tool included with Altera
Quartus II software which helps debugging an FPGA design by probing the state of internal
signals in the design. Example test of read access is presented in Figure 38 . The figure
shows correct readout. However, write access presented in Figure 39 indicates
that the parameters are inappropriate – only half of the word is written.

Figure 38 FPGA-ARM communication test

Figure 39 FPGA-ARM communication test

The communication interface between FPGA and ARM is summarized in Figure 40 .

Figure 40 ARM-FPGA interface

 Universal Measurement System with Web Interface

Maciej Lipiński 45

3.3.2 Acquisition Management Logic
The process of acquiring data can be divided into three phases:

• Idle – no writing/reading to/from SSRAM, parameters can be set,
• Armed – storing data in SSRAM continuously, waiting for trigger,
• Acquisition – storing required number of samples in SSRAM after trigger

occurred (and trigger delay was applied)
It seems reasonable to store the data read from ADCs continuously in SSRAM (Armed
phase). The memory is treated as circular buffer. When acquisition is ought to start (trigger
detected and delay time counted), the address of appropriate sample is remembered.
The processor readout by default starts from this address. Such a solutions enables the user
to view data which occurred before the trigger signal (as long as the record length is not
equal to 128k, which is the SSRAM size). The proposed acquisition process is summarized
in Table 6.

No Description
State
name

1

Parameters are stored in FPGA registers:

sampling time, record length, delay, trigger source, trigger level

I
D
L
E

2

Data is stored continuously to SSRAM with programmed frequency (sampling

time). If the trigger by signal level has been chosen, simultaneously the level of
acquired signal is compared with the trigger level value stored in FPGA register.

A
R
M
E
D

3
When trigger signal is detected, the delay counter is activated

T
R
I
G

4

After appropriate delay has been counted, the SSRAM address is stored in
FPGA register and data acquisition is started by activating sample length

counter.

D
E
L
A
Y

5

After appropriate number of samples is stored in SSRAM, the end address is
saved in FPGA register and the bit indicating that data has been acquired is
activated. This is a signal for ARM processor that data is ready for readout.

A
C
Q
U
I
R
E

Table 6 Acquisition process

 Moore finite state machine (FSM) was designed to control data acquisition and readout
(Figure 41). State machine is in 100 MHz domain. However, it is controlled by registers
which communicate with ARM in 90 MHz clock domain. Communication between control
registers and microprocessor is available regardless of the FSM state.

 Universal Measurement System with Web Interface

Maciej Lipiński 46

Figure 41 Finite state machine

FSM consists of five main states and two SSRAM test states. Testing features were added
in the debugging phase of the project. It was necessary in order to test SSRAM and data
buses at the working frequency. Detailed description of all the FSM states is provided
in Table 7 .

 Universal Measurement System with Web Interface

Maciej Lipiński 47

State Description

IDLE

No acquisition, no data readout, all the acquisition parameters are recommended to be
set in this state

WAIT TRIG

Clock domain of SSRAM is switched to 100 MHz. Data is read from ADCs and written to
SSRAM in sampling time intervals (multiples of 10ns) continuously. SSRAM works as a
round buffer. FSM is in this state until trigger is detected or device is “dis-armed” by the
user.
The following parameters are loaded from control registers during this state: delay time
and sample length. It means that change of this parameters by microprocessor in the
subsequent states, will not affect current data acquisition process.

TRIG DELAY

If trigger delay is not enabled by the user (trigger delay time equals 0), FSM skips this
state. In this state, data is acquired with the appropriate frequency (sampling time). Time
set by the user (delay time, multiple of 10ns) is counted down, starting from the trigger
occurrence. After appropriate time has collapsed, SSRAM address is stored as start
address pointer in the control register. By default, readout starts from this address.
However, the address from which readout shall be started, can be set by the user.

CAPUTRE

Data stored to SSRAM with appropriate frequency (sampling time) for user-defined time
(number of samples).

COMPLETED

Acquisition is stopped and SSRAM clock is switched to 90 MHz. Flag bit in status control
register is set to indicate that data is read for readout. The default readout start address
can be changed. This state is maintained even after the readout is completed. So there is
possibility to read data multiple times. Return to IDLE state is possible only after ARM bit
in control register is set to zero (device “dis-armed”).

WRITE
SSRAM

Data is written to SSRAM as if during acquisition. Instead of writing data from ADCs, data
is generated by FPGA. There are few test modes which determine what data shall be
written to SSRAM:
• writing address to the memory indicate by the address,
• writing 0x5555 to even and 0xAAAA to odd addresses on channel 1 and 0x0000 to

channel 2,
• writing 0x5555 to even and 0xAAAA to odd addresses on channel 2 and 0x0000 to

channel 1,
• writing 0x0000 to both channals and all addresses

READ SSRAM

Data is read from the memory (only for Signal Tab II observation)

Table 7 Description of FSM states.

 Universal Measurement System with Web Interface

Maciej Lipiński 48

 Data (2 x 10bits) is read from both Analogue to Digital Converters (ADCs)
simultaneously and written to the same SSRAM word (32bits) under the address indicted
by the address counter. Data and address bus width between ARM and FPGA are both
16 bits. Therefore, it is possible to access from ARM directly only 216 = 64 K of 16-bit words.
Since SSRAM has 128 K 32-bit words, it is only possible to access directly 25 % of SSRAM.
 Since microprocessor access to SSRAM data is always performed by reading
consecutive words starting from a given address, it was decided to solve the problem
by mapping entire SSRAM memory into single 16-bit register (readout register). Each time
the readout register is read, the address counter is incremented. Since data bus between
FPGA and ARM is only 16-bits, one SSRAM word (32-bit) is read in two turns. The least
significant bit (LSB) of readout counter indicates which half of the SSRAM word is read
(high or low). Readout counter is incremented each time read operation is detected on
the readout register. The idea is presented in Figure 42.

Figure 42 Measured data flow

3.3.3 Trigger detection
There are four possible trigger sources

a) ARM/AUTO – the user triggers acquisition, it is done by writing appropriate bit
in control register

b) External trigger – signal connected to special trigger input
c) Channel 1 – trigger by level of input signal to ADC on channel 1
d) Channel 2 – trigger by level of input signal to ADC on channel 2

These trigger sources fall into two categories:
1. Trigger source is a signal from ADC (c & d)
2. Trigger source is a binary signal (a & b)

In both cases, trigger is detected in so-called edge detector by analyzing four consecutive
samples of a binary signal and recognizing appropriate trigger edge (falling/rising). In further
case (2), the source is a binary signal which can be directly an input to edge detector
(bit in control register, TRIG IN). In former case (1), the source is an analogue signal
translated by ADCs to vector discreet values. Thus it needs to be translated into a binary

 Universal Measurement System with Web Interface

Maciej Lipiński 49

signal which, in turn, is an input to the edge detector. The translation is done
by a comparator. Signal value is compared with set (by the user) trigger level. If signal value
is greater than trigger level, high level (‘1’) is set on the comparators output, otherwise low
level (‘0’) is outputted (Figure 43).

Figure 43 Trigger detection process

3.4 Linux Device Driver

“Device drivers take on a special role in the Linux kernel. They are distinct
“black boxes” that make a particular piece of hardware respond to a well-
defined internal programming interface; they hide completely the details of
how the device works. User activities are performed by means of a set of
standardized calls that are independent of the specific driver; mapping those
calls to device-specific operations that act on real hardware is then the role
of the device driver. “ [30]

 Device drivers allow to interact with hardware devices from user space. They provide
an abstract layer between hardware and the application/script, thus the higher-lever
application code can be written independent of the underlying hardware.
 In this project device driver is needed to provide interface between Linux user space
application (SCPI server) or scripts (CGI) and logic implemented in FPGA. Since the system
is meant to be universal (logic implemented in FPGA can be customized or replaced
completely), the driver needs to provide flexibility. The driver is also clearly divided into
logical and physical layers to make porting to other architectures as simple as possible
(Table 8).

 Universal Measurement System with Web Interface

Maciej Lipiński 50

Functionalityy Description Layer File name

Driver logic

Hardware independent implementation of
driver’s logic, uses custom read/write functions
to access hardware

abstract
oscilloscope.c
oscilloscope.h

Hardware
configuration

Called during driver’s initialization, used to
configure hardware (by writing appropriate
registers with appropriate settings) and map
physical address into virtual memory address
space. Hardware dependent because the
configuration needs to be appropriate to the
underlying hardware. No direct hardware
access.

FPGA_config.c
FPGA_config.h

Read/write
function

implementation

Functions used to access hardware directly by
reading or writing appropriate address.

physic

k_IOfpga.c

Table 8 Drivers structure

3.4.1 Abstract layer
 The fpga driver was developed as character device driver. Char devices are accessed
through names in the filesystem. Those names are called device files or nodes and are
conventionally located in the /dev directory. Char nodes are identified by a “c” in the first
column of the output of ls –l. This command prints also the information about device numbers
(major and minor). The major number identifies the driver associated with the device.
The minor number is used to determine exactly which device is being referred to. fpga driver
implements two kinds of device numbers allocation. By default, it allocates device number
dynamically since there is a constant effort within Linux kernel development community
to move over to the use of dynamically-allocated device numbers and a randomly picked
major number can lead to conflicts and troubles if the driver is more widely used. In case
a static allocation is desired, it is possible to specify device number at the load time.
 The fpga implementation uses a global variable, fpga_major, to hold the chosen
number (there is also a fpga_minor for the minor number). The variable is initialized
to FPGA_MAJOR_NUMBER, defined in fpga.h. The default value
of FPGA_MAJOR_NUMBER in the distributed source is 0, which means “use dynamic
assignment.” The user can accept the default or choose a particular major number, either
by modifying the macro before compiling or by specifying a value for fpga_major
on the insmod command line.
 The fpga driver connects four basic operations with the reserved device numbers
through file_operations structure (defined in <linux/fs>). The structure is a collection
of function pointers. Each open file is associated with its own set of functions which are
in charge of implementing the system calls. A file_operation structure in fpga driver is called
fpga_fops (according to convention). There are for fields in the structure which point to
the functions in the driver that implement the following specific operations (Figure 44):

 Universal Measurement System with Web Interface

Maciej Lipiński 51

struct module *owner
Not an operation but a pointer to the module that “owns” the structure. This field is used
to prevent the module from being unloaded while its operations are in use. It is simply
initialized to THIS_MODULE, a macro defined in <linux/module.h>.

int (*fpga_ioctl) (struct inode *, struct file *, unsigned int, unsigned long);
Implements ioctl system call which offers a way to control device.

int (*fpga_open) (struct inode *, struct file *);
The first operation performed on the device file. It is used to track the number of opened
device references

int (*release) (struct inode *, struct file *);
This operation is invoked when the file structure is being released. It is used to track
the number of opened device references.

Figure 44 File operations structure

Internally, fpga represents each device with a structure of type struct fpga_Dev (Figure 45),
its components are described below.

Figure 45 Structure which represents FPGA device.

Struct cdev
The kernel uses structures of type struct cdev to represent char devices internally. Before
the device’s operations can be invoked by the kernel, cdev structure must be allocated
and registered. The structure and its associated helper functions are defined
in <linux/cdev.h> which needs to be included in the driver’s code. Since the cdev structure
is embedded within fpga_Dev structure, it is allocated using cdev_init() function.

 Universal Measurement System with Web Interface

Maciej Lipiński 52

void *pFPGAaddr
A pointer to the beginning of virtual address of FPGA address space. This pointer is used
as a base address of all the I/O functions (read/write). It is obtained using ioremap_nocache
function.

int refcount
Keeps the number of opened references to the device. It is incremented each time
fpga_open function is called, and decremented each time fpga_release function is called.

char device_name[10]
Name of the device, represents the driver in user space (/proc/drivers/fpga) and kernel space

parameters_t parameters
 A structure storing acquisition parameters (Figure 46).

Figure 46 Structure storing acquisition parameters

unsigned int cmd
unsigned int state
unsigned int startAddr
unsigned int stopAddr
unsigned int startRDaddr
char dataAcquiredFlag
unsigned int readout_number
unsigned int test_register
Variables which reflect the content of appropriate registers in the FPGA logic.

3.4.1.1 Debugging
 During the driver’s development debugging was done extensively. Kernel programming
brings its own, unique debugging challenges. Kernel code cannot be easily executed under
debugger, nor can it be easily traced, because it is a set of functionalities not related to
a specific process. Driver errors can bring down the entire system, thus destroying much
of the evidence that could be used to track them down.

printk
There are few ways to debug Linux Device Driver, the most commonly used (in general
and during development of fpga driver) is monitoring, which in applications’ programming
is done by calling printf at suitable points. In Kernel debugging, the same can be
accomplished using printk. The printk function behaves similarly to the standard C library
function printf. It is defined in Linux kernel. The kernel needs its own printing function
because it runs by itself, without the help of the C library. The kernel messages are
appended to /var/log/messages or printed to the current console.
 During the development printk was very useful, however, in the final release
of the driver printing messages to the console or log file is unnecessary and unwanted.
On the other hand, printk functions can be found useful if a bug is detected or during further

 Universal Measurement System with Web Interface

Maciej Lipiński 53

development of the driver is needed. Therefore, all the printk functions which were used for
debugging purposes, are included in the pre-processor #ifdef DEBUG condition and can be
enabled/disabled necessary.

/proc
Another technique used for debugging during the driver’s development was querying
the system which can be done by creating a file in the /proc file system. It is a special,
software-created filesystem that is used by the kernel developers to export information
to the world. The content of the files under /proc is generated on the fly by functions tied
to each file.
 This solution is heavily used in the Linux system by many utilities such as ps, top
and uptime to get their information. Some drivers export information via /proc. The /proc
filesystem can be very conveniently used with CGI scripts to export information from
the device and even control the device. Therefore, it is the fpga driver’s main mean data
information exchange and control. This solution, however, has an important disadvantage,
which needs to be mentioned but does not overweight advantages. Adding files under /proc
is discouraged by the kernel developers as /proc fileystem is seen as “a bit of an uncontrolled
mess that has gone far beyond its original purpose” [30] .

3.4.1.2 /proc filesystem
 In order to create a read-write /proc file, the driver must implement two functions:
a function to produce the data when the file is read and a function to read and interpret
the data when a file is written to. When a process (application) reads from fpga driver’s /proc
file, the kernel allocates a page of memory. The data written to the page by the driver
in read-function, is returned to user space. The function presented in Figure 47 assumes
that there will never be a need to generate more than one page of data (it returns value
of one control register: 16 bits) and so ignores the start and offset values. All of proc_read
functions in fpga driver, but one, can be implemented in such a simple way, since the amount
of data returned by them is precisely known and is less than a page.

Figure 47 Function which generates data when /proc/fpga/cmd file is read

 The only exception is the function that returns the measurement data. The amount
of data returned is not constant, it depends on the acquisition parameters. It is very likely that
more than one page of data is returned. Thus implementation of multiple pages /proc file was
necessary. It was done using seq_file interface. This interface provides a set of functions
for implementation of large kernel virtual files. It assumes that the /proc virtual file steps

 Universal Measurement System with Web Interface

Maciej Lipiński 54

through a sequence of items that must be returned to the user space, therefore, an “iterator”
object needs to be created. Seq_file needs four iterator methods called start, next, stop
and show.
 The start function is always called first (Figure 48). It reads record length FPGA
register to find out how many double words is to be read. It also reads test FPGA register
to check whether the reading is performed in normal mode or in test mode. If a specific test
mode is on, the data is outputted in a special form. pos is an integer position indicating how
many double words have been read.

Figure 48 Implementation of start method in the seq_file interface

The next function should move the iterator to the next position (Figure 49). It increments
the pos variable and checks it against the expected number of words to be read. It returns
NULL if there is nothing left in the sequence.

Figure 49 Implementatin of seq_next

When all the acquired data is read and the kernel is done with the iterator, it calls stop
function. There is no action required in fpga driver implementation, so the function is empty.
In between these calls, the kernel calls show (Figure 50) method to output measurement
data to the user space. This method creates output for the item in the sequence. It uses
special function for seq_file output (seq_printf). The show function reads two words (16bits).
It performs two consecutive accesses to the address of readout register. Each access
increments the SSRAM address counter in FPGA logic. One call to show function causes
one SSRAM word (32bits) to be read. Each SSRAM word consist of the measurement
from 2 ADCs.

 Universal Measurement System with Web Interface

Maciej Lipiński 55

Figure 50 seq_file show method which outputs measurement data to user space

The data read from SSRAM is in Binary Offset format, which is determined by the ADC’s
hardware mode setting. To make the driver universal and user-friendly, it was decided that
the output format of the data should be readable. Since only natural numbers are allowed
in device drivers, and the resolution of ADCs is approximately 1mV (10 bits and 1ppV gives
1000mv/1024), it was decided to output data in milivotls. The show function performs
the necessary conversation. To make SSRAM testing more convenient, the data is outputted
in the hex format during test mode.
 All the iterator operations (start,stop, next, show functions) are packaged
up and connected to a file in /proc by filling in a seq_operations structure (Figure 51)
and creating a file implementation. The connection to /proc is made creating file operations
structure (Figure 52) and necessary open method (Figure 53), which connects the file to
the seq_file operations.

 Universal Measurement System with Web Interface

Maciej Lipiński 56

Figure 51 Seq_operations structure

Figure 52 File operations structure

Figure 53 Proc open method

 The FPGA logic (i.e acquisition) can be controlled by writing appropriate data to /proc
files. This is possible by binding write_proc functions with /proc files. Figure 54 presents
implementation of function called when /proc/fpga/cmd file is read.

Figure 54 Implementation of write_proc function

 Universal Measurement System with Web Interface

Maciej Lipiński 57

buffer is a pointer to a page of data retrieved from user space. This data is read and
interpreted by the function. Then appropriate hardware access is performed.
 All the read_proc and write_proc functions need to be connected to entries in the /proc
hierarchy using. This is done in procfs_register function (Figure 55). In the first place, the
function allocates memory for the proc device data structure which is used to pass
information between read_proc and write_proc of readXwords /proc entry. Then the
appropriate /proc path is created (/proc/driver/fpga) and registred. Finally, all the /proc entries
are connected to appropriate functions (read_proc and/or write_proc accordingly).
As an example, Figure 55 presents how cmd /proc entry is bound with appropriate functions.

Figure 55 procfs_register function

 Universal Measurement System with Web Interface

Maciej Lipiński 58

3.4.1.3 ioctl
 Most drivers implement ioctl system call, which supports user space requests
via the ioctl method. In the user space, the ioctl system call have the following prototype:

int ioctl(int fd, unsigned long cmd, …)

The dots in the prototype represent a single optional argument. In fpga driver
implementation, a pointer to a structure is mostly used since it enables to exchange any
amount of data with user space. The driver’s header file defines structures which are passed
to the ioctl system call as the third argument. User programs must include that header file
to control the driver. The header defines also symbolic names representing commands’
numbers. Figure 56 presents an example implementation of ioctl command called “cmd”.
Ioctl commands need to copy data to or from the user address space. It is done by
the following kernel functions, which copy an arbitrary array of bytes and sit at the heart
of the ioctl implementation.

unsigned long copy_to_user(void __user *to, const void *from, unsigned long count);
unsigned long copy_from_user(void *to, const void __user *from, unsigned long count);

The usage of these functions can be seen in cmd implementation on Figure 56.
In CMD_WRITE, the data (number representing a command) is copied from the user-space
and written to the hardware. In CMD_READ, the data is read from the hardware, filtered
and copied to the user-space. This schema is repeated with the implementation of the other
ioctl command.

 Universal Measurement System with Web Interface

Maciej Lipiński 59

Figure 56 ioctl driver method

 Universal Measurement System with Web Interface

Maciej Lipiński 60

/proc and ioctl functionality
/proc file entries and ioctl commands implemented by fpga driver provide the same
functionality. Therefore, both can be used interchangeably. Table 8 presents the driver’s
interface (/proc and ioctl). Ioctl’s third argument is a pointer to data structure, depending
on the command, 5 different data structures are used to exchange data between user-space
and the driver. The structures are presented in Figure 57 .

Figure 57 ioctl data structures

The driver interface is divided into:

• general purpose – can be used to access FPGA with any configuration, prepared
for custom-made configuration,

• FPGA control logic specific – specific for the control logic implemented in FPGA,
• oscilloscope specific – for oscilloscope/spectrum analyzer implementation.

Ioctl /proc filesystem
Command name

Ioctl command Arg File mane format R/W Example commands

Reset RESET - reset 1 W Echo 1 > reset

General FPGA access FPGA Fpga_t fpga
r/w Addr data

(hex)
R/W

Echo w 0x220 0x33 > fpga

Cat fpga

CONFIG_READ
Configure

CONFIG_WRITE
singleReg_t Config

Number

(decimal)
R/W Echo 1 > config

Ext. trigger, rising slope,

sampling time disabled

CMD_READ

Command
CMD_WRITE

singleReg_t cmd R/W

Echo 16 > cmd

Echo 32 > cmd

Echo 48 >cmd

ARM

TRIGGER

ARM & TRIGGER

Status STATE_READ singleReg_t state R

Cat state

1

2

3

Data acquired

ARMED

Data acquired and armed

PARAM_READ
Parameters

PARAM_WRITE
Parameters_t parameters

Len:time:delay

(decimals)
R/W Echo 20:0:0 > parameters

START_RD_ADDR_READ
Custom start read address pointer

START_RD_ADDR_WRITE
singleReg_t startRDaddr startAddr (hex) R/W Echo 200 > startRDaddr

Address pointers (start & stop) ADDR_POINTERS_READ dataX2_t addressPointers
StartAddr stopAddr

(hex)
R 200 500

Read single data DATA_1_READ singleReg_t readSingleData
0xdata

(no converstion, hex)
R Cat readSingleData

Read two words (one SSRAM word) DATA_2_READ dataX2_t read2words

Voltage_ADC_1

Voltage_ADC_2

(converted, decimal, [mV])

R Cat read2words

Read x SSRAM words DATA_X_READ dataX_t readXwords
Volt_adc1, volt_adc2

(converted, decimal, [mV])
R/W

Echo 20 > readXwords

Cat readXwords

Read entire measurement data readresult
Volt_adc1, volt_adc2

(converted, decimal, [mV])
R Cat readresult

Test TEST singleReg test R/W
Echo 21 > test

Cat test

Table 9 ioctl/proc interface

3.4.2 Physical layer
 Physical layer comprises of the function which are hardware dependent. In particular
there are two kinds of such functions:

• Read/write,
• Hardware configuration and memory mapping.

Read/write functions are wrappers of special kernel I/O memory access functions (provided
via <asm/io.h>). Read/write wrappers enable to abstract physical layer from logical layer.
During development they allowed to test various hardware access solutions without changing
logical layer. Read/write wrappers implement the specific types of I/O access which
are needed in logical layer, namely:

• Read/write 16 bits from/to FPGA
• Read/write 32 bits from/to FPGA
• Read/write 32 bits from/to ARM SMC register

All the wrapper functions embed debugging facilities and memory barriers which prevent
compiler optimization.
 Since the data bus width between ARM and FPGA is 16 bits, 32-bit access to FPGA
is performed as two 16-bit accesses. Moreover, due to hardware problems, the least
significant byte of the address is ignored, when addressing control registers. Therefore,
32-bit access to FPGA is implemented in the following way (Figure 58):

Figure 58 2 words (32-bits) FPGA IO functions

The functions presented on Figure 58 are used, for example, when accessing acquisition
parameters (sample length, sampling time, trigger delay). These parameters are more than
16-bit wide, thus they are stored in two consecutive control registers. However, only one
wrapper function needs to be used to read their value (Figure 59).

Figure 59 Using FPGA IO functions

 Universal Measurement System with Web Interface

Maciej Lipiński 63

On the other hand, the wrapper function which is used for setting configuration registers
in ARM can access 32 bits at once. Therefore, the implementation is much simpler (Figure
60).

Figure 60 Implementation of read/write ARM register functions

The main task of configuration and memory mapping function are

• Map control registers of External Bus Interface (EBI) User Interface, Static Memory
Controller (SMC) and Power Management Controller (PMC) into virtual address
space,

• initialize EBI, SMC and PMC with appropriate parameters,
• map I/O physical address into virtual address space.

The EBI Chip Select Assignment Register is used to determine to which Chip Select pin
the FPGA is connected. FPGA address bus and data bus are connected to Static Memory
Controller(SMC). SMC controls access to external static memory and peripheral devices.
It is fully programmable by setting appropriate parameters in the SMC Chip Select Register
(Table 10). The frequency on which SMC works is set by writing PMC Programmable Clock
Register (PMC_PCK) and PMC System Clock Enable Register (PMC_SCER).

 Universal Measurement System with Web Interface

Maciej Lipiński 64

Name Description Value SMC setting

Data width

Determines data bus width

16 bits DBW = 1

Data float time

External bus is marked occupied and
cannot be used by another chip select
during TDF cycles

0 TDF = 0

Byte access type

Used if data width is 16 or 32 bits,
defines whether chip select line is
connected to two/four 8-bit wide devices
or one 16 bit wide device

 BAT = 0

Wait select enable

Enables/disables wait states (additional
cycles during which NWE/NOE pulse is
held low)

enabled WSEN =1

Number of wait states

Defines the read (NOE) and write
(NWE) signal pulse length from 1 cycle
to 128 cycles

1 NWS = 1

Data read protocol

Standard or Early Read Protocol

Standard DRP = 0

Setup delay

Time between the moment when
address is available on the bus and
write/read enable pulse is set.

1 cycle
RWSETUP =

1

Hold delay

Length of the read/write enable pulse

1 cycle
RWHOLD =

1

Table 10 SMC configuration

3.5 Binding Web Interface to Device Driver with CGI

 The communication between applet and hardware (more precisely Linux Device Driver)
is performed using Common Gate Interface (CGI).

“CGI is the part of the Web server that can communicate with other programs
running on the server. With CGI, the Web server can call up a program, while
passing user-specific data to the program (such as what host the user
is connecting from, or input the user has supplied using HTML form syntax).
The program then processes that data and the server passes the program's
response back to the Web browser” [3] .

 Universal Measurement System with Web Interface

Maciej Lipiński 65

A short explanation how CGI scripts work is included Appendix A: 2.3. Table 11 presents
structure of CGI requests.

Action GET request send by the applet to the server

Read from hardware

/cgi-bin/oscilloscope/get_name_.cgi

Write to hardware

/cgi-bin/oscilloscope/get_name_.cg?param_value

Table 11 GET requests: _name_ is the name of hardware parameter [31] .

 In Universal Measurement System with Web Interface CGI is used in a non-standard
way. It is called from the applet application and the output is never shown to the user directly.
It is either ignored (when data is send to the hardware) or stored in applet variable for further
processing. The applet provides special universal functions to read/write data from/to
hardware. Such functions create appropriate requests to the server, send them and read
the answer. The method used to pass the data to the server is GET. Since GET is used,
server stores the argument of the request (everything after ‘?’) in environmental variable
QUERY_STRING which can be read in the script. Example “get” and “set” scripts
are presented in Figure 61 , detailed description is also provided.

Figure 61 Example CGI scripts with a detailed description [31] .

3.6 Web Interface

 The Web Interface of Universal Measurement System with Web Interface is based on
a simple website which enables to navigate through the utilities provided by UMSWI:

• UMSWI system management and configuration interface (Java Script),
• Oscilloscope and Spectrum Analyzer Graphic User Interface (Java Applet),
• Information about the project,
• Manuals (including example scripts in Matlab).

The layout of the website is meant to be simple and intuitive. The structure of UMSWI’s web
page and its layout is presented in Figure 62 .

 Universal Measurement System with Web Interface

Maciej Lipiński 66

Figure 62 Design of UMSWI web site layout and structure.

The website employs Cascading Style Sheets (CSS) [46] to separate the presentation layer
from the document’s structure and content. Using CSS makes development of the website
easier in terms of presentation consistency and its changes, since visual effects of entire
website (all the web pages) can be controlled from one location: myStyleSheet.css
document. The style sheet document is imported by all the web pages of the website.
If the look of the website’s pages need changes, modification in myStyleSheet.css
is propagated throughout the entire server – automatically. CSS makes also development
of new pages much easier, since import of the style sheet document by the new web page
makes its “look and feel” identical as the rest of the rest of the website. The drawback
of the CSS is its inconsistent browser support. Therefore, special attention needs to be paid
to test the website in various browsers and, if necessary, implement so-called CSS “hacks”
to achieve consistent layout among different browsers. However, this drawback is a minor
problem for UMSWI’s website because it’s layout is not sophisticated,.
 There is a developer’s website of UMSWI on the authors home page [47] . It provide an
extended version of the website which is available on UMSWI. The extension include
sections which provides HOWTO including detailed description about system development,
source codes, binaries and information how to use them.

3.6.1 Oscilloscope and Spectrum Analyzer GUI
 Oscilloscope and Spectrum Analyzer GUI is implemented as Java Applet designed
according to Model-View-Controller (MVC) paradigm [61]. One of the methods
of implementing MVC in Java is the Observer-Observable pattern, which is described
in Appendix A: 3.3 . It was decided that the Observer-Observable pattern would be used
in relation between model and view. Thus, the model implements observable and all
the views implements observer interface. If a model parameter is updated, all the registered

 Universal Measurement System with Web Interface

Maciej Lipiński 67

observers are notified. The following constraints were established for the applet’s design,
which is presented in Figure 63 :

• All the parameters representing hardware and view settings are stored in the model
(only),

• The main model (DevModel) is a holder of oscilloscope (OscilloscopeModel) and
spectrum analyzer (AnalyzerModel) models,

• DevModel implements observable, and creates an interface to access
OscilloscopeModel and AnalyzerModel which does not implement observable,

• DevModel accesses hardware though FpgaUtils,
• FpgaUtils class is used to interface hardware and does not store any parameters

(unless in offline mode),
• To minimize transfer between client and server, hardware parameters are set only

when the oscilloscope is being armed (the acquisition is started),
• Views implement observer interface,
• Different panels of Control Panel are implemented as independent observers (called

control widgets)

Figure 63 MVC implementation design

3.6.1.1 Model
 Figure 64 presents simple UML class diagram of classes which constituted Model and
classes associated with it.

Figure 64 Class diagram of Model related classes

 Universal Measurement System with Web Interface

Maciej Lipiński 68

Device Model (class DevModel)
The DevModel class is the main Model class which takes the role of a container of the other
model classes. Each device (oscilloscope, spectrum analyzer,….) is represented by its own
class that implements functions specific to that device. However, View & Controller
components of MVC architecture interface only DevModel and have no knowledge
of the other classes. It means that all the methods of OscilloscopeModel or AnalzyerModel
which need to be called by View or Controller need to be represented in DevModel.
Only DevModel implements observable, thus it is responsible for notifying observers about
parameters changes. This class manages also communication with hardware
(through FpgaUtils) and stores hardware parameters as well as the attributes representing
device state. In order to eliminate unnecessary communication between the client
and the server, changes of hardware parameters made by the user on the Control Panel are
not instantly followed by writing new parameters to the device. The hardware parameters
are sent to the device, only before the acquisition is started. Once the acquisition is finished,
the hardware parameters are read from the device and saved in variables representing
hardware setting during the latest data acquisition. Also the raw data from the device
is saved in the Model. It means that DevModel stores two representations of hardware
settings:

• Hardware parameters to be written to the device when the acquisition is started, they
determine the settings of a new acquisition

• Hardware parameters which were set when the latest acquisition took place.
Such solution solves the problem of using device by multiple clients or from multiple
browsers. However, it does not solve the concurrency problem (when two measurements are
done from different clients simultaneously). Since the parameters are set just before data
acquisition is started, each client can set different parameters and change it independently.

Oscilloscope Model (class OscilloscopeModel)
It holds all the parameters representing view settings of the oscilloscope (i.e. time/div,
volt/div, x-axis & y-axis start positions of the signal) and implements methods used
for calculations connected with oscilloscope display. The View is only displaying data
and perform no calculation. It is OscilloscopeModel class responsibility to provide View with
positions in which data needs to be displayed on the screen (screen vectors). Model
implements functions which perform the following actions:

• Calculate screen vectors according to current display settings (time/div, volts/div),
• Retrieve current screen vectors,
• Calculate distance between “ticks”,
• Set and get values of all the display parameters.

Analyzer Model (class AnalyzerModel)
It holds all the parameters representing view settings of the spectrum analyzer (i.e. freq/div,
spectrum start position), instantiates class responsible for FFT calculation and implements
methods used for calculations connected with spectrum display. The View is only displaying
data and perform no calculation. It is AnalyzerModel class responsibility to provide View with
positions in which data needs to be displayed on the screen (screen vectors) and scaling
factors to print appropriate scales on the display margins. Analyzer model implements
methods which perform the following actions:

• Prepare data for FFT calculation, instantiates FastFourierTransform object and uses
it to calculate FFT on the prepared data and returns the spectrum,

• Look for spectrum maximum value (used for scaling view and scales)
• Calculate spectrum scales,

 Universal Measurement System with Web Interface

Maciej Lipiński 69

• Convert spectrum to decibels,
• Calculate screen vectors for spectrum (in volts and decibels),
• Look for maximum spectrum frequency,
• Set and get screen parameters.

Fast Fourier Transform (class FastFourierTransform)
The FFT algorithm was not implemented by the author. Open source implementation
by Tsan-Kuang Lee from University of Pennsylvania is used [48] .

Check Device State (class CheckDevState)
This class implements Runnable interface which enables its instances to be executed
by a thread. The thread is started when acquisition is initiated (pressing : “SINGLE”,
“NORMAL” or “AUTO”). The task of CheckDevState depends on the “mode” of acquisition
and trigger type:
• AUTO mode – it triggers acquisition, checks device state until the data is ready

for readout, calls readout function and re-starts the cycle (triggering acquisition),
• SINGLE or NORMAL modes

o User-defined trigger – checks whether the “Trigger” button was pressed, once
the button has been pressed, it triggers acquisition, checks device state until
the data is ready for readout, calls readout function and stops acquisition
(and re-starts the cycle),

o Channel or external trigger – checks device state until the data is ready
for readout, calls readout function and stops acquisition (in SINGLE mode)
or repeats the cycle (in NORMAL mode).

FPGA Utilities (class FpgaUtils)
The class implements communication with hardware through CGI scripts. This class provides
two kinds of methods:

• Universal hardware set/get methods which enables to call any CGI script on
the server,

• Oscilloscope implementation specific methods which enables to set/get acquisition
parameters – they use universal methods in their bodies.

The communication, in universal hardware get/set methods, is implemented using HTTP
Tunneling and GET requests described in [49] . They allows to communicate with the server
through HTTP socket connection on port 80. This way, the firewalls can be bypassed
and server-side programs do not have to return complete HTML documents, instead only
data can be returned. The limitations to this method include the fact that the requests
responses are received by the applet directly, not the browser and the only server the applet
can tunnel to, is the server from which the applet was downloaded. The limitations
are acceptable for the methods implementation in UMSWI.
 An example FpgaUtils method enabling to get data from hardware is presented
in Figure 65 . The method uses URLConnection class provided by java.net. package.
The class contains methods which enable to communicate with URL over the network from
the applet.

 Universal Measurement System with Web Interface

Maciej Lipiński 70

Figure 65 Implementation of HTTP Tunnelling and GET requests

The method responsible for setting data to the hardware is very similar to the get method.
The main difference is the parameter passed in the URL address (Figure 66)

Figure 66 Forming URL request which sends parameter to the hardware

FpgaUtils enables the applet to be used offline. The applet is offline, if it has no access
to CGI scripts. Such situation happens when it is not run from the target machine
(i.e. in Eclipse’s Applet Viewer). FpgaUtils implements function which automatically, during
its initialization, checks whether the applet is offline/online. In offline condition,
communication with hardware is simulated. All the hardware parameters are written
to variables instead of writing them to hardware. Consequently, parameters are read from
the variables rather than from hardware. The measurement data, instead of being read
from the hardware, is generated by a WaveGenerator class. Such solution was designed to
make the development easier and faster by enabling running the applet in Applet Viewer
or on authors homepage[47] .

Wave Generator (class WaveGenerator)
Generates sine, cosine, triangle, square and sawtooth waveforms with user-defined
parameters (frequency, amplitude, sampling rate, DClevel). Source: [48]

 Universal Measurement System with Web Interface

Maciej Lipiński 71

3.6.1.2 View
 The applet was initially design to be an oscilloscope only, therefore it attempts
to resemble a traditional oscilloscope front panel. The graphic user interface is divided into
a screen widget (OscilloscopeScreen) and a control panel (controlPannelGUI). The screen
is meant to present acquired data according to view settings. The control panel enables
to change the device state, display device parameters and adjust two kinds of settings:

• Hardware settings – parameters which can be used to control acquisition logic
(sampling time, trigger delay, trigger source, record length, trigger level),

• Display settings – parameters which control the way data is displayed and whether
it is displayed (Volts/Div, Time/Div, Freq/Div, enable chan1/chan2),

Throughout the applet’s development, the GUI look evolved. The changes were caused
by the user feedback and addition of functionalities to the applet, i.e. the spectrum analyzer
was added in the final state of applet’s development. The newest version of the applet was
(and still is) available on the author’s home page [47] . Since the applet is designed to work
“offline”, it could be put on the faculty’s server and tested by users.
The addition of the functionalities was based on users feedback and project requirements
(spectrum analyzer). The final GUI design is presented in Figure 67. Since some functions
are not used during the normal applet usage and due to the space limitations, an auxiliary
panel displayed in a separate window was introduced. The Auxiliary Panel is opened upon
user’s request by clicking right mouse button on the screen. Auxiliary panel includes:

• Enabling test data and setting the kind of test data,
• Displaying raw data,
• Scaling factor setting.

Figure 67 Final GUI design

A detailed UML Class Diagram of View-related classes is presented in Figure 68.
All the View –related classes implement Observer interface. They register to observable
Model. View-relate classes hold no data. All the data retrieved from the user is stored
in the Model. All the data displayed by View-related classes is retrieved from the Model.
Therefore, the View is never out-of-date.

 Universal Measurement System with Web Interface

Maciej Lipiński 72

Figure 68 UML Class Diagram of View-related classes

 Universal Measurement System with Web Interface

Maciej Lipiński 73

Screen Widget (class ScreenWidget)
ScreenWidget is responsible for generation of the applet’s screen image. It uses so-called
double-buffering. This means that drawing is done to an offscreen image in the first place.
When generation of the offscreen image is finished, it is drawn on the screen. Such solution
reduces screen flickering. The tasks of ScreenWidget includes:

• Drawing grid, title and all the other constant components of the screen,
• Drawing measurement data from channel 1 or/and 2 (if enabled) starting from

appropriate position (the screen view can be moved by dragging it with a mouse
or changing position on control panel),

• Drawing spectrum and its scales,
• Drawing “ticks” (similar to oscilloscope cursors),
• Showing Auxiliary Panel.

Auxiliary Panel (class AuxiliaryPanel)
 Implements control of auxiliary functions:

• Hardware reset - triggers reset of FPGA logic,
• Scaling factor – data read from the device is multiplied by this value
• Show Raw Data – displays data read from the device (scaled by scaling factor)
• Test Data Enable – it is possible to force offline behaviour of the applet which results

in generation of waveforms

Control Panel GUI (class ControlPanelGUI)
 This is nothing more than a container for widgets implementing control panels,
in particular: AcquisitionParameters, ControlButtons, DeviceSettings, FFTPanel
and TimeDivPanel. All the control widgets enable to set device parameters, display settings,
or change device state. None of the values are stored in the widgets, a value retrieved from
the user is instantly used to update the Model.

3.6.1.3 Controller
 In Java, controllers are the listeners in Java event structure. Each component that
interacts with the user needs to implement some kind of event listener. Such method updates
appropriate value in the model. It is important that the neither View nor Controller stores any
data internally. This way the view is never “out of date”, since it displays data retrieved from
the model.

 Figure 69 presents simplified UML diagram explaining how hardware parameters
are set in UMSWI.

Figure 69 UML Diagram describing applets’ hardware interfacing [50]

 Universal Measurement System with Web Interface

Maciej Lipiński 74

3.6.2 UMSWI management and configuration
 The management and configuration interface of UMSWI is implemented using HTTP
forms, Java Script and Common Gate Interface (CGI). HTTP forms provide buttons and input
fields. Java Script functions verify input data and call CGI scripts. CGI scripts perform system
calls to change system configuration or start/stop SCPI Server. The web page layout
is presented in Figure 70 .

Figure 70 UMSWI configuration and management web page layout

The webpage is divided into three parts:
1. Current system configuration information – it reads current IP address and net Mask

when the webpage is loaded. Java Script function checkIP() calls getipaddress.cgi script
which make ifconfig system call. The output of the call is interpreted by checkIP() to get
IP address and net Mask. checkIP() is presented in Figure 71.

Figure 71 Example Java Script script using CGI

 Universal Measurement System with Web Interface

Maciej Lipiński 75

2. Change of system settings – enables to get default, set current and store in memory
as default IP and Mask.

i. Get default – reads IP/Mask value from default_ip/default_mask file stored
in /usb/ARMscope/data folder. Default IP/Mask is set on the start-up of the device
by set_ip script.

ii. Save as default - it gets the value of IP/Mask from the form input field, verifies
the input data correctness (IP/Mask has special format) and saves the IP/Mask
inputted in form field in default_ip/default_mask file. Default IP/Mask is set on
the start-up of the device by set_ip script.

iii. Set current IP & Mask - it gets the value of IP and Mask from the form input fields,
verifies the input data correctness (IP and Mask have special format) and sets the IP
and Mask calling setnewip.cgi script. The script uses ifconfig system call to set
the new system configuration

3. SCPI server configuration – it enables to set the system to start SCPI automatically
on device start-up, it is also possible to start/stop the server, get default and store
in memory port number.

i. Enable/disable SCPI auto start – it modifies the default_scpi_autostart file stored
in /usb/ARMscope/data folder. If auto start is enabled, the file is written with
“Enable”, otherwise it holds “Disable”. start_scpi script, which is called during
system start-up, reads default_scpi_autostart file and starts SCPI server if “Enable”
is read, otherwise SCPI Server is not started,

ii. Get default – calls the getdefaultport.cgi script which reads the default_port file from
/usr/ARMscope/data folder,

iii. Save as default – it gets the value of Port from input field, verifies the input data
(Port has special format) and saves the Port number in default_port file. Default Port
number is used by the start_scpi script on system start-up to run SCPI Server,
proved the automatic SCPI server start is enabled,

iv. START - it gets the value of Port from input field, verifies the input data (Port has
special format) and calls startscpiserver.cgi which starts the SCPI Server
on the provided port,

v. STOP – calls stopscpiserver.cgi which stops the server process,
vi. TEST – calls testscpiserver.cgi which calls ps system command and looks for SCPI

Server process,
vii. READ SCPI LOG FILE – calls getscpilogfile.cgi script which opens the log_file

located in /usr/ARMscope/data. SCPI Server writes to log_file detailed information
about its performance, especially errors.

3.7 Measurement Interface
 Measurement Interface is implemented as a SCPI Socket
Server with commands interpreter and hardware interface using
C language. An information about SCPI standard and its syntax can
be found in Appendix A: 3.4 . Figure 72 presents example SCPI
message and its elements. Figure 73 presents design of SCPI
Measurement Interface. It is a small application which takes as
an input argument the kind of user interface (server or local).
If the application is started as server, the second argument needs
to be provided, the argument is the number of port on which server
is listening. Details of program implementation of each of the
application’s components are described in the following subchapters.

Figure 72 SCPI
command

message elements

 Universal Measurement System with Web Interface

Maciej Lipiński 76

Figure 73 SCPI Server design

3.7.1 User interface
 The main user interface of the SCPI Measurement
Interface application is a socket server. It implements
internet stream sockets which are characterized
by IP Address and port number. Stream sockets use TCP
to provide reliable two-way connected communication.
A local interface was needed during development.
It is a simple command line interface.

3.7.2 Pre-parser
 Pre-parser is a single function (pre_parse_cmd())
which receives data from the user as a single string
of characters. It extracts separate commands (command
messages) by looking for semicolons. The outcome of this
function is a dynamically allocated linked list of separated
commands.

Figure 74 Communication layers

3.7.3 Parser
 For each element of the linked list returned by pre-parser, parser function
(parse_cmd()) is run. It extracts and recognizes elements (mnemonics, argument) which
compose the command. Mnemonics are checked against a list of known mnemonics.
If the extracted mnemonic is not found on the list, an error is returned.
 As SCPI syntax allows full names and abbreviation of the mnemonics and determines
that the parser is not case sensitive, the following approach was taken. For each mnemonic,
an abbreviation and full name needs to be placed in the list of available shortcuts.
The names are divided into several lists according to the abbreviation length. The extracted
mnemonic is converted into uppercases and checked against the lists (starting with the list
with the longest shortcuts). If the mnemonic is found, it is added to the head of a linked list
associated with the command which is being parsed. If it is not found on the list, an error
is returned.
 Consecutive commands do not have to start each time from the root (“:”). It means that,
if a command is executed (i.e. :SENS:SWE:TIME 1) and the consecutive command has
the same path (i.e. :SENS:SWE:POIN 100), SCPI standard sais that it is enough to input
the last mnemonic (i.e. POINT 100) instead of the full path. This is why the parser, before
starting to extract mnemonics, checks whether the full path is provided (starting with “:”).

 Universal Measurement System with Web Interface

Maciej Lipiński 77

If colon is not detected at the beginning of the command, linked list from the previously
performed parsing is taken deleting only the last element (head) of the list. The outcome
of the parser function is a linked list of consecutive mnemonics which compose the header
and command’s argument.

3.7.4 Commands decoder
 A dictionary of available commands was
translated into a data tree (Figure 76). Each node
of the tree is associated with a mnemonic and is
represented by a structure that holds (Figure 75):
• mnemonic’s name,
• list of pointers to child-nodes,
• pointer to a function associated with the node.

Figure 76 C implementation of SCPI dictionary

Based on the data tree, a set of C-files defining nodes’ relations and command functions
were created. A C-file representing the parent node (i.e. TRIGger) defines its connections
with children nodes (i.e. MODE, SENSe, STATus) and functions associated with children
nodes (Figure 77).

Figure 75 Command structure

 Universal Measurement System with Web Interface

Maciej Lipiński 78

Figure 77 Defining nodes relations and function associations

To make development and further extensions easier, the following file naming convention
has been established:

scpi_NODE1_NODE2_...._NODEx.c
scpi_NODE1_NODE2_...._NODEx.h

3.7.5 Command logic
 Command logic is implemented for each node in the function associated with the node.
A pointer to this function is held in the data tree. SCPI Standard requires all the commands
(except: :*CLS, :*RST, :RUN, :STOP, :AUTO) to answer a query. Query is defined
as a header with question mark “?” at the end (argument). For the end nodes (nodes without
children), a query returns value of the setting associated with the node. For the middle nodes
(nodes with children), a query returns settings associated with all the children nodes.
To make the implementation of command logic easier and faster, a special function has been
defined which takes as an input a list of possible arguments (i.e. ?, AUTO,CH1,CH2,EXT).
It recognizes the argument and returns its index in the list. In principle, a function which
implements a command logic has structure presented in Figure 78 .

 Universal Measurement System with Web Interface

Maciej Lipiński 79

:
Figure 78 Template of function implementing command’s logic

3.7.6 Hardware interface
 Hardware interface uses Linux Device Driver to control FPGA. The driver is interfaced
by reading and writing appropriate files in /proc/driver/fpga directory.

3.7.7 Logfile interface
 Each time SCPI Interface application is opened, a new logfile is created. All
the messages concerning application performance are written to the logfile. A special
function (print_to_logfile) is defined to make the process simple and efficient. Studying
a logfile, the entire process of command parsing, decoding and execution can be followed
step-by-step. It makes much easier finding errors SCPI commands send by the user (Figure
79).

 Universal Measurement System with Web Interface

Maciej Lipiński 80

Figure 79 Example SCPI log file

3.7.8 Extendibility
 New commands (nodes) can be added to the SCPI Measurement Interface. In order
to do that, the following actions needs to be taken:
1. PARSER - entry needs to be added to the list of recognized mnemonics and its

abbreviations in the scpi_parser_data.h
2. COMMAND DECODER –a node in the data tree needs to be added by:

a. Declaring new node (appropriate header, depending on the node’s location in data
tree),

b. Creating a pointer in the parent node (appropriate C-file, depending on the node’s
location in data tree)

c. Creating a pointer to the function implementing command’s logic (appropriate
C-file, depending on the node’s location in data tree),

3. COMMAND LOGIC – an appropriate action associated with the new command needs
to be implemented (appropriate C-file, depending on the node’s location in data tree)

4. recompilation.
A detailed instruction describing how to extend SCPI Measurement Interface with is included
in SPCI Manual available on the UMSWI website
 Figure 80 summarizes parsing and decoding process for “:sens:swe:poin 10 ;
:trig:edge:sour auto ; :run ” input string.

 Universal Measurement System with Web Interface

Maciej Lipiński 81

Figure 80 Explanation of parsing and decoding process

 Universal Measurement System with Web Interface

Maciej Lipiński 82

4. Testing

4.1 Development test

 Testing was performed for each of the system’s components separately. Once a part
of the system was proven to work correctly, it was added to another correctly working
component, to eventually, create a working system. Such management made
the development easier and more efficient. The order of development and tests was
following:
1. Development and tests of Embedded Linux,
2. Development and simulation of FPGA logic,
3. Development and tests of Linux Device Driver without interfacing hardware,
4. Development and tests of Java Applet without interfacing Linux Device Driver,
5. Tests of Java Applet which interfaces Linux Device Driver without interfacing hardware

(FPGA logic),
6. Development and tests of SCPI Server without interfacing Linux Device Driver,
7. Tests of SCPI Server and Linux Device Driver without interfacing hardware

(FPGA logic),
8. Tests of FPGA logic and Linux Device Driver (interfacing hardware),
9. Tests of Java Applet interfacing Linux Device Drvier interfacing hardware (FPGA

logic),
10. Tests of SCPI Server interfacing Linux Device Driver interfacing hardware (FPGA

logic),
11. Development and tests of UMSWI management and configuration interface.
During the development, when a test analogue input signal was required, two sources
of signal were used:

• Stabilized power supply for constant input,
• Music card output, waveforms generated with Cool Edit 2000, waveform generator.

4.1.1 Embedded Linux Operating System
 Tests of Embedded Linux were conducted by checking whether the required by project
utilities and peripherals work correctly:

• Ethernet,
• MMC/SD card ,
• USB (optional),
• httpd (web server).

4.1.2 Linux Device Driver
 The driver was initially tested without interfacing hardware. The driver’s architecture
separates hardware interface from the driver’s logic and the actual communication between
the driver and hardware is limited to reading and writing registers at appropriate address.
Therefore, it was possible to test thoroughly driver’s logic by substituting the operation
of reading/writing hardware by reading/writing variables and outputting information about the
operation to the terminal/log file. Once logic was proven to work correctly, the hardware
interface was tested by examining Static Memory Controller (SMC) control signals
on the microprocessor’s pins. Further testes of the driver were done along with Java Applet,
SCPI Server and FPGA tests.

 Universal Measurement System with Web Interface

Maciej Lipiński 83

4.1.3 FPGA debugging
 FPGA logic was firstly tested using Quartus II Simulator tool which enables functional
and timing simulation. Only simulation was done at the beginning, since the author was not
provided with recorder module.
 When the hardware was available, the logic was tested during its operation (in real
time) using Signal Tap II tool provided by Quartus II. The SignalTap II Embedded Logic
Analyzer [51] enables to debug an FPGA design. It does not require changes to the design
or external probes in order to capture the internal nodes’ or I/O pins. The device memory
is used to store the captured data.
 FPGA testing was started with FPGA-ARM Communication Logic. It was needed
to work correctly before starting tests of Acquisition Management Logic which is controlled
from ARM. SignalTap II enabled to see the signals coming from ARM microprocessor,
therefore it was possible to determine whether the hardware part of the driver was working
correctly. Thanks to the Signal Tap, it was also possible to establish the right SMC
parameters used in FPGA-ARM communication and described in 3.3.1 Communication
logic . During the tests of FPGA-ARM communication, a multitester turned out to be useful
as well. Some of the problems encountered during attempts of communication were caused
by minor faults in the hardware of UMSWI. In particular, unconnected pins of address
and data bus. After this experience, to avoid tedious debugging of the FGPA logic done
in vain, the hardware was always tested first. Therefore the control logic of acquisition
process was extended to allow tests of SSRAM and the address (data)bases. The following
tests were performed to proof SSRAM reliability:

• Instead of storing in SSRAM data read from ADC, data was generated FGPA
was written to SSRAM and than read, two kinds of data were generated:

o Data equal to the address of writing,
o 0xAAAA and 0x5555 in subsequent addresses,

• Electrical values of the pins were measured - two missing connections were detected.
SignalTap was also used to debug and improve the acquisition control logic, mainly
the trigger and delay timing to make sure it is correct.

Figure 81 Debugging FPGA

 Final tests of FPGA logic and Linux Device Driver where done applying a signal
(from known source) and performing entire measurement using /proc file system interface
of fpga driver. The acquired data begin compared with the source (reference).

 Universal Measurement System with Web Interface

Maciej Lipiński 84

4.1.4 Applet tests
 The applet was developed and tested along with
CGI scripts. In the first place, they were tested without
interfacing Linux Device Driver. The scripts were
configured to read and write ordinary files (including the
readout data). Once the applet’s CGI interface and CGI
scripts were proved to work correctly, an OFFLINE mode
was introduced in the applet. In OFFLINE mode the data
is prevented from being sent with CGI scripts to server
(on the lowest possible level of applets’ architecture).
The parameters are written to variables and read from
variables, the measurement data is generated.
This enabled easy development of the applet in Eclipse
Development Environment. Before being tested as a part
of entire system, the applet was run with the driver which
does not interface hardware. Once interfacing hardware, the applet with all its functionalities
could be tested. It also allowed further tests of other system components, .i.e FPGA logic
(Figure 82 presents trigger tests).

4.1.5 SCPI server tests
 Tests of SCPI server were done in the similar way as the tests of applet. In the first
place, information about the hardware operations to-be-made was printed, secondly, a “fake
driver” (which does not interface hardware) was used, lastly SCPI server was connected
to the hardware. For the testing purpose a local interface for SCPI Server was developed.
It was done to be able to exclude the possibility that error is caused due to wrong
implementation of socket protocol. Finally, tests of socket server and all other components,
using telnet application as client, were conducted.
 SCPI Server was tested with Matlab application[52] . Matlab uses TCPIP object
to connect with remote instruments via TCPIP protocol. “fwrite()” function is used to send
messages and “fread()” function is used to receive responses. Special m-files were created
to simplify communication between Matlab and UMSWI.
SCPIopen() – opens connection with UMSWI,
SCPIidentify(t) – identifies device,
SCPImeasureTest(t) – performs example measurement
SCPImeasureAUTO(t, sample_number, chan) – performs measurement allowing
 to choose sample time and channe,
SCPIclose(t) – closes connection.

Figure 83 presents measurement of the same waveform using Java Applet and Matlab.

Figure 83 Matlab test of SCPI Server

Figure 82 Trigger tests

 Universal Measurement System with Web Interface

Maciej Lipiński 85

4.2 Final tests

 Tests were conducted in ELPHA/PERG laboratory. The aims of final tests included:

• verification of measurement accuracy,
• specification of UMSWI’s parameters and features,
• observation of system’s behavior in boundary and beyond-boundary conditions.

4.2.1 Test set-up
 The parameters of devices needed to conduct tests were determined by UMSWI’s
theoretical parameters and practical methods of its verification.

Frequency
Since the sampling rate of UMSWI’s Analogue-to-Digital Converters is 100MHz, the highest
frequency of an analogue signal which, theoretically, can be reconstructed from samples
(according to Nyquist-Shannon sampling theorem) is 50MHz. Therefore, theoretically,
the range of digital oscilloscope used for reference measurement should be at least 50Mhz
and the generator should produce signals in the rage 50MHz-0Hz. However, in practice,
the frequency value for which an oscilloscope is considered accurate is significantly smaller
than theoretical value and is called “frequency range” (Appendix: 4). It is indicated by
the frequency at which measured signal is attenuated by 3dB. Since preliminary tests
showed that frequency range falls between 15-20MHz, 20MHz functional generation was
considered sufficient. On the other hand, to receive quality reference measurement, it is
recommended that the reference measurement device is significantly more precise than
the device under test (DUT). Therefore the reference oscilloscope frequency range should be
100MHz or more.

Voltage
The resolution of UMSWI’s ADCs is 1V/1024bits ~= 1mV, therefore the vertical sensitivity
of 1mV/div should be sufficient to verified the amplitude of the smallest signal that could be
detected by UMSWI. Devices which were used to conduct test measurements are listed
in Table 12 . The test setup-up is presented in Figure 84 .

Name Model Parameters Function

Digital Phosphor
Oscilloscope

Tektronix
TDS 3054B

Range: 500MHz
Sampling: 5GS/s

Vertical sensitivity: 1mV/div

Provided reference
measurement

Function generator 1 TG120 20MHz

Max freq: 20MHz

Input signal

Function generator 2 MXG-9810A

Max freq: 7MHz

Input signal

Table 12 Devices used during tests

 Universal Measurement System with Web Interface

Maciej Lipiński 86

Figure 84 Test set-up

 The measurements were taken on the reference oscilloscope using “measure” function.
On ARMsocpe, measuring was performed using “ticks” to receive time of one period
and signal’s amplitude. It can be assumed that readout error of a period (or voltage)
on AMRscope is approximately one pixel. The screen is 500-pixel wide (and high),
and was always fitted to show less then 2 periods(or less then 2 amplitudes).
Therefore, the readout error can be estimated as:

xx errorerrorerror 21 ≤≤ (Eq. 1)

where

%2.0
500

1
__

*1.0*500

__
*1.0*1

1 ===

div

mVortime
xpx

div

mVortime
xpx

error x (Eq. 2)

is the error when period (or amplitude) is equal to screen width (height), and

%4.0
250

1
__

*1.0*250

__
*1.0*1

2 ===

div

mVortime
xpx

div

mVortime
xpx

error x (Eq. 3)

is an error when two periods (or amplitudes) are equal to screen width (or height). Therefore:

4.02.0 ≤≤ error

All the Matlab scripts used to present measurement results are included in the attached CD.

4.2.2 Vertical axis measurements
 Initial measurements of amplitude accuracy were taken within moderate frequency
and voltage range to avoid errors of low- and high-frequencies. Two measurement series
were taken. First measurement included constant frequency and various amplitude values
(from 100mV to 1V with 100mV intervals). Second measurement included constant
amplitude value and various frequencies (from 1Hz to 1MHz with logarithmic increment).
Results of the initial measurements of amplitude accuracy are presented in Figure 85
in charts 1 & 2. Charts 5 & 6 present the measurement error. It is quite apparent that
the error is constant. Therefore, it was decided to introduce scaling factor. A simulated effect
of scaling factor on the amplitude accuracy is presented in charts 3 & 4, and the decreased
accuracy error can be seen on charts 5 & 6. The scaling factor was calculated as an average

 Universal Measurement System with Web Interface

Maciej Lipiński 87

of ratios between reference amplitudes and measured amplitudes (scaling_factor = 1.0946).
Green lines in charts 3, 4, 5 & 6 show results of the amplitude accuracy measurements
conducted with scaling factor applied. The results prove that introducing scaling factor was
a good decision, the relative error (in per cent) dropped from 8.62% to 0.69% which is close
to measurement readout error. The standard deviation of the amplitude is small and equals
0.44 .

Figure 85 First amplitude accuracy test (final_test_1.m)

 Once it was proven that amplitude accuracy is stable for reasonable frequencies,
a measurement was conducted to verify the range of amplitude accuracy. The measurement
focused on high frequencies. The results are presented in Figure 86. As described
in Appendix A: 4 , -3dB attenuation determines the frequency range of a device. The results
show that the actual frequency range is approximately 12MHz. The attenuation is flat until
1MHz and almost drops below -3dB for 10MHz. Therefore, it seemed reasonable to state
that the frequency range of ARMscope is 10MHz, while the actual frequency range is slightly
higher and reaches 12MHz. The results clearly show that there is no point in conducting
measurements for frequencies higher than 20Mhz.

Figure 86 Amplitude attenuation for high frequencies (final_test_2.m)

 Universal Measurement System with Web Interface

Maciej Lipiński 88

 Figure 87 presents attenuation of various amplitude values for frequency 10MHz
and the relative error (in per cent) of amplitude accuracy at such frequency. The attenuation
does not go beyond -3 dB which means that the proposed frequency range of 10MHz seems
to be the good choice.

Figure 87 Amplitude attenuation at 10Mhz for various amplitude values (final_test_3.m)

 Figure 88 presents offset error for 10KHz square signal. Offset accuracy indicates how
well the device handles low-frequency issues. The average error of 2.62% shows that
this device is not perfect for low frequencies.

Figure 88 Offset error

 Although the resolution of ADCs is ~1mV (1V/1025 bits), due to the noise, the minimal
amplitude which can be detected and measured by ARMscope was observed to be 5mV.
Figure 89 and Figure 90 present example test screen shots.

 Universal Measurement System with Web Interface

Maciej Lipiński 89

Figure 89 Minimal input voltage test at 10 Hz Figure 90 Minimal input voltage

test at 10 kHz

4.2.3 Horizontal axis measurements
 Relative error of signal frequency and period are presented in Figure 91.
The measurements show that frequency error stable in the frequency range:100Hz-10MHz.
The error is on the level of measurement error: 0.2% - 0.4%. This is a big error if compared
with data sheets of commercial digital oscilloscopes. However the error is determined by
the readout error and the error of reference measurement. It is very probable that the actual
frequency error is much lower.

Figure 91 Signal frequency and period relative error(final_test_4.m)

The results prove the upper limit of UMSWI’s accurate measurement (established in 4.2.2)
and sets limit for low frequency measurement to 100Hz. However, the low frequency

 Universal Measurement System with Web Interface

Maciej Lipiński 90

limitation can be questionable, since the instability of reference oscilloscope for 10Hz
measurement is approximately 1-2%.
 Figure 92 presents measurement of rising time. Rising time is described in
Appendix A: 4.

Figure 92 Rising time measurement (final_test_5.m)

4.2.4 Frequency domain
 Performance of UMSWI spectrum analyzer in terms of frequency measurement was
tested by reading frequency of the main harmonic displayed by the UMSWI’s spectrum
analyzer and frequency measurement form reference oscilloscope. Since the UMSWI
spectrum analyzer is not suitable for accurate reading of frequency, this test was only
to prove rough accuracy of the FFT algorithm and scale display. Table 13 and Figure 93
present measurement results. It is clear that FFT algorithm works correctly in terms
of frequency.

Sine waveform Square waveform
Reference

frequency [Hz]
Spectrum analyzer

reading [Hz]
Reference

frequency [Hz]
Spectrum analyzer

reading [Hz]
10100 10000 10020 10000

109000 110000 107000 107000

1055000 1050000 1040000 1040000

5200000 5200000 2500000 2500000

7450000 7500000 5060000 5100000

11300000 10125000 7500000 75000000

12500000 12500000 10900000 11000000

15000000 15000000 12500000 12500000

17500000 17500000 15000000 15000000

20000000 20500000 17500000 17500000

21200000 21000000

20000000 20000000
Table 13 Test of Spectrum analyzer

 Universal Measurement System with Web Interface

Maciej Lipiński 91

Figure 93 Spectrum analyzer test (final_test_6.m)

 The performance of UMSWI’s spectrum analyzer in terms spectrum’s amplitude value
(in mV and dB) was tested with the help of Matlab and using ability to perform measurement
with UMSWI from Matlab. To connect from Matlab to UMSWI SCPI Server and perform
measurements, scripts provided on UMSWI website were used. The measurement
connection with UMSWI was starte with SCPIopen.m. Another script (SCPImeasure.m) was
used to retrieve data with appropriate parameters. Matlab connection with SCPI Server
is closed using another script: SCPIclose.m.
Spectrum analysis of the same signal were done using UMSWI Java Applet (Figure 95)
and Matlab scripts (Figure 94), the results compared. This analysis proved that SCPI Server
works correctly.

Figure 94 Frequency analysis done with Matlab script (myFFTplot_1.m)

 Universal Measurement System with Web Interface

Maciej Lipiński 92

Figure 95 Frequency analysis conducted with UMSWI Spectrum Analyzer

4.2.5 Boundary conditions tests

4.2.5.1 Hardware-wise
 Waveforms captured at bandwidth frequency and beyond bandwidth frequency
are presented in Figure 96. The sine wave is of reasonable quality at 10MHz. Since,
there are only 5 samples per division at 20MHz, the sine signal is more similar to triangle.

Figure 96 Sine and square signal measurement at 10 MHz and 20 MHz

 Universal Measurement System with Web Interface

Maciej Lipiński 93

 Because of a hardware filter at 30MHz, the square wave
measured at 10MHz does not have square shape. It can be
clearly seen form the spectrum that the second, third and other
harmonics were cut off by the hardware filter causing signal
deformation.
 When the input signal amplitude exceeds 1V, or the
offset causes the signal to go beyond +500mV or – 500mV
(if scaling factor applied, the values may be different), the
measured signal is cut off. Exceeding the input voltage range is
not recommended due to possible hardware damage. Figure
97 presents measurement of input signal with 1.2V amplitude.
The signal is obviously cut off.

4.2.5.2 Software-wise
 During tests in the ELPHA/PERG laboratory the UMSWI was used continuously for
6 hours without necessity of hardware reboot or software reset. The time of measurement
taken using Applet application depends on the number of samples. In case of maximum
memory usage (128 K words), it reaches average of 5 seconds. When the number
of samples equals screen resolution (500px), the measurement time drops to less than 1s,
the refresh rate in auto mode equals 0.85 times / s.

4.2.6 UMSWI parameters

Parameter name Value
Bandwidth 10 MHz
Memory Depth 128K points (Single and Dual Channel)
Channels Dual Channels + External Trigger
Sample Rate 100MS/s
Rising Time 25ns
Time Base Range 20ns/div to 200ms/div
Trigger models Edge, Auto, Manual
Trigger source CH1, CH2, Ext, Manual
Vertical Sensitivity 10mV to 1V
Vertical Resolution 10 bits
Dynamic Range 46 dB
Input Voltage 1V
Input coupling DC
Measurement time of 128K samples 5s
Auto mode screen refresh when sample number
equals screen resolution

0.85 times/s

Time base accuracy 4000 ppm
DC Vertical Accuracy ± 2.6%

Table 14 UMSWI parameters

Figure 97 Input signal
exceeding voltage

 Universal Measurement System with Web Interface

Maciej Lipiński 94

5. System Applications

5.1 European Organization for Nuclear Research (CER N)

 Universal Measurement System with Web Interface is currently used at European
Organization for Nuclear Research (CERN)[53] .
 UMSWI was used at Proton Synchrotron (PS) to observe proton bunches. PS is
a 28 GeV accelerator used as an injector for other CERN’s facilities: the Super Proton
Synchrotorn (SPS) and the Large Hadron Collider (LHC). One of the PS accelerator
parameters is harmonic number (h) – the number of proton packages being accelerated.
Bunches (groups) of protons are transported in buckets. The idea is explained in Figure 98.
The harmonic number of CERN’s Proton Synchrotron ranges from 1 to 23. The frequency at
which protons circulate in PS (frequency of turn) varies from 430kHz to 470kHz. The change
of frequency from 430kHz to 470kHz increases protons’ energy from 800MeV to 26GeV.

Figure 98 Acceleration of particles with AC voltage radio frequency RF [54].

Figure 99 presents measurement of a beam of protons filling 4 out of 7 buckets (h=7).
In all the measurements, channel 1 is connected to measurement transformer, channel 2
is connected to Wall Current Monitor.

 Universal Measurement System with Web Interface

Maciej Lipiński 95

Figure 99 Four bunches of protons, h=7

Figure 100 presents proton beam with harmonic number of 8. All buckets are filled with
protons. The energy of each bunch is slightly different, therefore periodic amplitude variation
can be noticed every each picks.
 A phenomena called bunch splitting takes place during harmonic number change from
7 to 21. The division of bunches during bunch splitting is presented in Figure 101.

Figure 100 Eight protons in bucket, h=8 Figure 101 Bunch splitting

Figure 102 presents a situation when only there is only one bucket (h=1) while in Figure 103
the harmonic number is 16 and all the buckets are filled. Figure 104 presents two buckets
filled with protons of different energy (h=4).

 Universal Measurement System with Web Interface

Maciej Lipiński 96

Figure 102 Single bunch, h=1 Figure 103 All 16 buckets full

Figure 104 Two buckets filled with bunches of varied proton number

5.2 Potential applications

 Potential applications of the outcome of this Master Thesis can be divided into three
categories:

• Application of the system as is (without hardware or software modifications) ,
• Application of the system with modifications of software and/or configuration

(content of MMC/SD card),
• Application of the control system (measurement platform with web and SCPI

interfaces) on new or modified hardware platform.
 Without hardware modifications, the UMSWI can be used as a very cheap
(~150 EURO) oscilloscope with remote screen and measurement interface (i.e. to observe
protons in Photon Synchrotron). It allows diagnostic measurements in accelerator tunnels
where data acquisition needs to be done remotely due to possible radiation danger.
However, it can be used to perform measurement in any dangerous places where remote
data acquisition is required, i.e. areas where explosion danger is high (mines, factories),
high health-risk zones (chemistry) or radioactive areas (power plants).

 Universal Measurement System with Web Interface

Maciej Lipiński 97

 Thanks to the design consisting of microprocessor (running Embedded Linux)
connected with FPGA, the same hardware with modified configuration files and applet
(the content of MMC/SD card) can be used to perform the following measurements tasks:

• Advanced digital oscilloscope – appropriate functions need to be implemented
in Java Applet,

• real time spectrum analyzer - implementing FFT algorithm in FPGA,
• software defined radio,
• 2 channels corelator,
• frequency counter,
• any device which use ADCs to measure input.

The UMSWI is also suitable for monitoring. The possibility of data processing (in FPGA
or microprocessor) enables UMSWI to be configured for self-decision making (i.e. deciding
whether to set up an alarm based on measured values). It is also possible to concurrently
process (in FPGA) data received from ADCs and store the outcome in memory. It can be
used to implement in FPGA algorithms for estimation of intensity or trajectory of particles
beam in accelerators. The advantage of UMSWI over ordinary digital oscilloscopes in is
the fact that calculations (i.e. trajectory, intensity) can be done on UMSWI in real time.
In oscilloscopes, lag time disables real time calculations. Modification of old and addition
of new FGPA algorithms is very easy – an appropriate file on MMC/SD card needs to be
replaced.
 Since the hardware used to build UMSWI is modular and because the control system
of UMSWI was designed to be as much platform independent as possible, there are many
possible applications of UMSWI which involve hardware modification. In such applications,
UMSWI is understood as a measurement platform with web and SCPI interface which
enables ready-made mechanism for implementation of control GUI. The recorder module
of UMSWI can be replaced by any other measurement board, thus a new measurement
device with web interface is created. The recorder module can be replaced by board with
radio antenna, water parameters measurement device, weather station, etc. Additionally,
UMSWI can be used to create a distributed system of measurement devices.

 Universal Measurement System with Web Interface

Maciej Lipiński 98

6. Conclusions

 Universal Measurement System with Web Interface (Figure 105) was created for
diagnostic purposes in High Energy Physics having in mind current technology trends and
market requirements to enable its wild usage in other places than accelerator tunnels as well.
UMSWI required design and development of flexible, well-thought and easily extensible
system. The objective was achieved. The system fulfilled all the initial requirements and after
being successfully tested by the author in laboratory conditions, it was sent to European
Organization for Nuclear Research (CERN) for further tests and operation.
 The essence and main advantage of UMSWI is its build-in web interface and web
server which make the device autonomous, plug & play and very convenient remotely
controlled measurement system. Unlike most of the measurement devices, UMSWI does
not require dedicated and separate server to be controlled via Ethernet. There is also
no need for special client software. Everything is included in the device and the client needs
no more than a web browser to operate it.
 The system performance could be further increased introducing optimization in terms
of data acquisition speed and graphic generation. However, such optimisation would
introduce visible improvement only when handling large numbers of samples close
to memory limits (2 x 128K samples).
 Development of Universal Measurement System with Web Interface resulted
in creating a control system which is vertically and horizontally flexible. Vertical flexibility
is recognized by the fact that the UMSWI control system can be ported to different platforms
(various microprocessors) with minor effort (Linux Device Driver porting). Horizontal flexibility
means that the existing control system can be easily extended to perform other
measurements as well as changed to control different hardware. Thus, the “universal”
in device’s name is justified. Simplicity of extensibility was proved during the development,
when the oscilloscope interface was extended by adding spectrum analyzer.
 Moreover, the design and solutions used in control system of UMSWI can be a good
basis for developing remote control of any system which needs to be controlled over
the Ethernet. The core of the system can be reused and adapted easily. The software
architecture is platform independent and requires very little resources.
 Production of a measurement system based on similar hardware and UMSWI’s control
system is planed by Creotech Ltd.

Figure 105 Universal Measurement System with Web Interface

 Universal Measurement System with Web Interface

Maciej Lipiński 99

Appendix A – Additional information

1. UMSWI hardware analysis

1.1 Data acquisition hardware architecture

 Data acquisition and readout is managed by the FPGA. Figure 106 presents a general
overview of acquisition architecture and data flow. The data acquired from ADCs can be read
by FPGA or written directly to SSRAM. It can be also written to SSRAM and read by FPGA
simultaneously. After being processed in FPGA, the data can be send to microprocessor
or/and written to SSRAM. The access of microprocessor to the data stored in SSRAM
is possible only indirectly through FPGA.

Figure 106 Acquisition hardware architecture

An important issue, which can be noticed in Figure 106 is the fact that there are different
sources of clock signal. CLK defines clock signal generated by oscillator which is connected
to ADC and FPGA This is a low-jitter clock signal which is required by ADCs. A1-CLK stands
for adjustable clock provided by ARM This is an independent clock signal for ARM’s data
readout. This clock can be derived by dividing the main ARM clock (180MHz) by the power of
two. A2-CLK stands for adjustable clock generated by FPGA which can be virtually anything,
in particular can be equal to CLK or A1-CLK . Therefore, the following clock domains:

• Clock domain imposed by 100MHz clock connected to ADCs - used during data
acquisition,

• Clock domain imposed by ARM clock (90MHz) - used during data readout
The clock of SSRAM needs to be switched between 100MHz and 90 MHz appropriately. Two
clock domains disable direct reading of data from ADCs to ARM. It is necessary to store
the data first with the ADC domain frequency (or division) in SSRAM or FPGA memory. After
desired number of data samples have been saved, the data can be read by microprocessor
in it’s clock domain. In theory, during either operation (writing to SSRAM or readout) and
in between, the data can be processed in FPGA (i.e. FFT). Processing data in FPGA during
acquisition is the least efficient if we want to store the outcome in SSRAM. This is because,
when writing data to SSRAM without processing, data can be written to SSRAM directly from

 Universal Measurement System with Web Interface

Maciej Lipiński 100

ADCs, without going through FPGA. This results in the minimal delay, data can be written
with 100MHz. If the data is processed in FPGA, one data bus needs to be switched between
reading data from ADC to FPGA, and writing data from FPGA to SSRAM. It results in two
times slower process and much greater delay. Data processing or analysis can be done
simultaneously with data writing to SSRAM from ADCs. This is used to implement trigger
by signal level when the signal level is interpreted while writing data to SSRAM.
 Another issue indicated in Figure 106 is the fact that address bus between ARM
and FPGA is not as wide as address bus between FPGA and SSRAM. Thus not entire
SSRAM memory space can be directly accessed from ARM.

2. Review of available technologies

2.1 Embedded Operating Systems

 The ARM processor (AT91RM92000) installed on the Single Board Computer module
is very popular among embedded systems. It is, of course, possible to develop applications
directly for this processor. However, much better and more popular solution is running
embedded operating system (OS). Developing applications for embedded system running
OD does not require extensive, processor-specific knowledge. It is exactly the same
as on standard PC, just the compilation must be performed for ARM architecture and the
consideration of limited resources must be taken into account. ARM9 processors are
so popular for embedded platforms that there are a few operating systems available for this
processor:

• Linux
o Distributions: uLinux, Denx, Embedian, BlueCat, Cadenux

(open source/proprietary)
o “vanilla” kernel + patches (open source)

• Windows CE (proprietary)
• Symbian OS (proprietary)
• Palm OS (proprietary)

Linux open source distributions:
uClinux – it supports many architectures and forms basis of many network routers, security
camera, DVD or MP3 players.
Cadenux – specialized in Linux for no-MMU ARM7 and ARM9 processors. The distribution
is build around uClinux.
Denx – open source distribution in form of Embedded Linux Development Kit (ELDK).
It provides software development environments for real-time and embedded systems.
Embedian – a smaller version of Debian, to be used on embedded systems, it retains good
features of Debian (i.e. packaging system).

2.2 Remote Measurement Interfaces

 A clear distinction needs to be done between physical layer and abstract layer remote
control standards. The former standards define construction and electrical parameters
as well as communication protocol of physical communication link. General Purpose
Interface Bus (GPIB), Recommended Standard 232 (RS-232), Universal Serial Bus (USB),
VME eXtensions for Instruments (VXI) or Ethernet are means of physically connecting

 Universal Measurement System with Web Interface

Maciej Lipiński 101

the controller with the measurement instrument. Different abstract layers can be used
to communicate via this physical connections.

2.2.1 Physical layer
Description based on [55] .

General Purpose Interface Bus (GPIB), IEEE-488 – standard developed in 1960s
by Hewlett Packard to facilitate communication between computers and instruments.
It provides specification and protocol for the communication. It is a parallel bus which sends
data in bytes encoded as ASCII characters. It’s maximum data rate is up to 8MB/s, it allows
up to 15 devices within the range of 20 m.

Serial Communication (RS-232) – a popular mean of data transfer between a computer
and peripheral devices (i.e. programmable instrument). It uses a transmitter fro sending data
one bit at a time via single communication line to a receiver. It is used for data transfers
when the speed is not crucial or when the distance is long. Unlike GPIB which needs special
board plugged into the computer to enable communication, most of the PCs are equipped
with serial port (however, it is less and less common). Its speed is up to 115.2kb/s
(synchronous: 1Mb/s). Range: 15 m.

Universal Serial Bus (USB) – increasing popular serial bus standard which enables
to connect device to a host computer. It is plug and play, enables to connect up to
127 devices to one host. It enables fast transfers (USB 2.0: 480 Mb/s).

VME eXtenstion for Instruments (VXI) – base on VME standard (IEEE 1014), consists
of mainframe chassis with slots holding modular instruments on plug-in boards. It is popular
in analysis for research/industry control application and data acquisition that require
substantial number of channels (hundreds of thousands).

LAN eXtensions for Instrumentation (LXI) – standard for an instrumentation platform
based on Ethernet technology. It is meant to be modular, flexible, and well-suited for small-
and medium-size systems.

PCI eXtensions for Instrumentations (PXI) – standard based on PCI similarly as LXI
and VXI.

Ethernet – frame-based standard in computer networking technologies for local area
networks (LANs).

2.2.2 Abstract layer
Virtual Instrumentation Software Architecture (VISA) – is an API for communication with
measurement instruments from PC. It is an industry standard implement in products of such
companies as Agilent Technologies and National Instruments. The standard includes
communication over physical links such as GPIB and VXI. VISA cannot be used directly
to control instrument over LAN, however, it is used by Ethernet-enabled standards,
such as VXI.

 Universal Measurement System with Web Interface

Maciej Lipiński 102

VXI-11 is an instrument protocol specification which defines a network protocol for controller-
device communication over a TCP/IP network. In principle, it allows an application (client)
to call procedures in the remote measurement instrument (server) as if they were local.
Remote procedures are identified by the client using a unique number. Each message, along
with the argument, encodes this number. According to [56] VXI-11 Devices can be
programmed in two ways:

• Calling VXI-11 compliant VISA library, preferably Windows users, such libraries
are available from National Instruments and Agilent

• Installing the VXI-11’s Remote Procedure Call Library (RPCL) and writing programs
with RPC calls,preferably Unix-like OS users

Standard Instrument Control Library (SICL) can be used to control measurement
instruments over GPIB, VXI, RS-232, LAN and other physical links. It is a communication
library that can be used by application written in C or C++ on various operation systems.
Examples of C programs that use SICL, which can be found in [57] , show that SICL is mean
of communicating with measurement instruments using Standard Commands
for Programmable Instruments (SCPI).

Interchangeable Virtual Instruments (IVI) defines instrument drivers standard. It builds
on the VXIplug&play specifications. However, it additionally incorporates new features that
address such issues as performance, development flexibility, instrument interchangeability.
It can communicate with instruments across GPIB, VXI, PXI, Serial, Ethernet and USB.

Standard Commands for Programmable Instruments (SCP I) defines syntax and structure
for programmable measurement and test instruments. It does not define underlying physical
or software layer. It happens that instrument control interfaces are simple wrappers of SCPI
commands, i.e. SICL.

2.3 Web technologies to control hardware

 In order to control measurement instrument, a web server needs to interface hardware
(in case of UMSWI, via Linux Device Driver). Depending on the web server’s capabilities
and the technology chosen there are few possibilities. If the web server embeds script
interpreter (ex. PHP), driver can be accessed directly by opening its file representation.
Otherwise, Common Gate Interface (CGI) can be used to call script (written in any language,
i.e. shell script, perl script) which performs required action.

Common Gate Interface (CGI)
CGI enables to communicate with programs running on the server from the webpage.
With CGI, the Web server can call up a program and pass user-specific data to the program
The program then processes that data and the server passes the program's response back
to the Web browser. Most servers expect CGI scripts to reside in special directories
(i.e. cgi-bin) and have special extensions (.cgi). When a user opens an URL associated with
CGI script, the client sends a request to the server asking for the file. When the server
recognizes that the address being requested is a CGI program, the server does not return
the file content verbatim. Instead, the server tries to execute the script. The process
is explained in Figure 107 . It is worth mentioning that:

 Universal Measurement System with Web Interface

Maciej Lipiński 103

 “CGI has the advantage of being a more-or-less platform-independent way
to produce dynamic web content. Other well-known technologies for creating
web applications, such as ASP and server-side JavaScript, are proprietary
solutions that work only with certain web servers” [58]

Figure 107 CGI process explanation

PHP
According to [4] , “PHP is the most widely used programming language on the Web, with over
40 percent of all web applications written in PHP”. It is a server-side scripting language
designed to crate dynamic web content. PHP parser needs to be added to web server
to generate HTML pages based on PHP. PHP is very flexible, many libraries are available
which provide ready-made solutions. It is also well suited for Web Graphic generation.
However, in interfacing hardware, the most important is the fact that PHP provides functions
to access, read and write server-side files. It means that hardware can be controlled directly
form PHP scripts by accessing files in /proc or /dev. PHP provides also functions to execute
server-side applications or shell commands (i.e. exec(), system()) which can also be used
to access and control hardware. Since PHP is a server-side scripting language, it is run
on server and the workload of user interfacing, graphic generation or data processing is
on server side.

Java Servlet
According to [58] , “servlets provide an elegant, efficient alternative” to CGI and “an easy-to-
connect-to, Java-based agent on the server” for Java applets. A servlet is a Java class which
can be loaded dynamically to expand server’s functionality. It is run on the server inside Java
Virtual Machine (JVM), therefore is portable and safe. Java Servlets do not require Java
support in the web browser but they do need such support on server side. Java Servlet
can control hardware by reading/writing file (i.e. in /proc file system) or using special library
(i.e. JavaComm) as described in the article [59] .

Active Server Pages (ASP)
Microsoft produced technology for generating dynamic web content. It enables HTML pages
to contain embedded code (usually VBScript or Jscript). ASP uses COM components which
are necessary for ASP’s correct performance. ASP support for other servers than Microsoft
Internet Information Server Version 3.0 is commercial. Therefore, ASP can be place among
not-very-platform-independent.

JavaServer Pages (JSP)
Unlike ASP, JSP is an open standard which is implemented by many vendors across all
platforms. JSP’s syntax is similar to ASP’s except that the scripting language is Java.
It is closely tied with Java servlets.

 Universal Measurement System with Web Interface

Maciej Lipiński 104

2.4 Web Graphic User Interfaces

 The graphic User interface can be generated on the server using Java Servlet
technology or creating graphics using PHP. It can be also done by generating a graphic
image from the data (on the device) and updating the image on the website. The advantage
of such a solution is the fact that the user does not need to have special applications
installed or browser’s plug-ins enabled. However, there are at least three disadvantages:

• appropriate technology has to be ported (cross compiled) for ARM microprocessor,
• the work connected with data computation, interaction with user, etc is done

on a limited-resources device (ARM microprocessor),
• all the user’s requests are answered by server directly, the exchange of information

between client and server is constant and heavy.
 Another solution is to move most of the work to the client. Any computer used by
the client is far more powerful than the ARM microprocessor, so the limitations are less strict.
Moving the work to the client’s side also means that the web server can be very simple.
JavaScript or Java Applet enable graphic generation and user interaction handling
on the client’s side. The drawback of such a solution is the fact that the user needs to have
web browser configured appropriately in case of Java Script. To use Java Applet, a Java
Virtual Machine needs to be installed.

2.5 Web servers

 The choice between generating GUI on the server or on the client is directly connected
with the choice of the web server. The former solution needs a good web server
with necessary tools (ex, PHP, Perl, Java, etc) the latter needs simple web server.
Among many solutions tested were three worth mentioning:

• Apache Web Server which was successfully cross-compiled for the ARM. Apache
is a widely used server, probably the first choice when developing web applications
on standard computers for websites accessed by man users simultaneously,

• KLone Web Server is a peculiar web server developed especially for embedded
systems. It allows to create dynamic pages by embedding C language in HTML.
What is even more interesting, the KLone server along with developed website
is compiled to a single executable. Such a solution seems quite appealing, however
it has few drawbacks:
o development can become troublesome because any change needs recompilation

of the server, especially that the web server needs to be cross-compiled for ARM,
o Bugs in the C code embedded in HTML can cause the entire server to crash.

• Web Server provided by Busybox - a very small web server with basic
functionalities (i.e. CGI).

3. Descriptions of chosen solutions

3.1 General architecture of embedded Linux

 General architecture of embedded Linux system is the same as architecture
of any Linux system. At this level of abstraction all Linux system are equal. Figure 108
presents all the components of generic Linux system architecture. Kernel is the core
component of the operating system.

 Universal Measurement System with Web Interface

Maciej Lipiński 105

“Its purpose is to manage the hardware in a coherent manner while providing
familiar high-level abstractions to user-level software (such as the POSIX APIs
and the other de facto, industry-standard APIs against which applications
are generally written)”[27]

Thanks to such architecture, applications which use the APIs provided by a kernel
are portable among the various architecture. Within Linux kernel, the low-level interfaces
are the part of the kernel which is platform-dependant and needs to be ported to specific
architecture. Low-level services typically handle CPU-specific operations, Basic interfaces
to devices and architecture-specific memory operations. Low-level hardware-dependant
interfaces are managed and controlled by hardware-independent Application Programming
Interfaces (APIs) of High-level abstractions.

“Above the low-level services provided by the kernel, higher-level components
provide the abstractions common to all Unix systems, including processes, files,
sockets, and signals. Since the low-level APIs provided by the kernel are
common among different architectures, the code implementing the higher-level
abstractions is almost constant, regardless of the underlying architecture”.[27]

File systems and Network protocols are good examples of components used by the kernel
to understand and interact with coming from or going to certain devices structured data.

Figure 108 Architecture of a generic Linux system [27]

At least one properly structured filesystem is needed for kernel’s proper operations – root
filesystem. Kernel loads the first program to run on the system from root filesystem. It can be
either loaded during the system on start-up into RAM and operated from there, or stored and
operated from hardware storage device.

“It [kernel] also normally relies upon this filesystem [root filesystem] for
certain further operations, such as loading modules and providing each
process with a working directory (though these activities might take place
on other filesystems mounted within the tree that begins with the root
filesystem).” [27]

 Universal Measurement System with Web Interface

Maciej Lipiński 106

Very often regular application do not interface kernel directly because kernel’s services
are unfit to be used directly by applications. Therefore, libraries and system daemons
are provided to interact with kernel on behalf of applications. One of the main libraries used
in Embedded Linux Systems (instead of GNU C library used in “normal” systems, called
glibc) is uClibc library. Błąd! Nie moŜna odnaleźć źródła odwołania. presents comparison
between glibc and uClibc. It is apparent that usage of uClibc allows to save very precious in
embedded system memory space.

Figure 109 Benefits of using uClibc library [29]

In most of Embedded Linux Systems, the daemons and Unix utilities (most Unix commands)
are provided by a toolset called BusyBox. It is a very small-size application, single
executable, which provides great functionality.

“BusyBox even includes a DHCP client and server (udhcpc and udhcpd),
package managers (dpkg and rpm), a vi implementation with most of its
features, and last but not least, a web server. This server should satisfy
the typical needs of many embedded systems, as it supports HTTP
authentication, CGI scripts, and external scripts (such as PHP). Configuring
support for this server with all its features adds only 9 KB to BusyBox 1.5.0” [27]

3.2 Model-View-Controller (MVC) design pattern

“The Model-View-Controller (MVC) paradigm is a way to partition your
user interface so it's easier to write and maintain. The idea is that you start with
a model—a set of classes representing the data you're working with. Next, you
construct various views of the data—classes that display the data on the screen.
Finally, you create a controller object that accepts user input and updates
the model or view.” [60]

When an application uses the MVC architecture, it employs three elements to help it bridge
the data and visual models that it uses. These three elements must be created and managed
by the program (Figure 110):

• View: visible GUI which is seen by the user,
• Model: abstraction used in the program logic, represents state and nature of visual

objects presented on the screen,
• Controller: enables communication between the model and view components.

It updates the model according to the changes resulting from the interaction with
the user.

 Universal Measurement System with Web Interface

Maciej Lipiński 107

Figure 110 MVC architecture [60]

3.3 Observer-Observable paradigm

 The Observer-Observable ([60, 61]) pattern consists of Observer listener interface
and Observable base class which are provided by java.util package. An object (i.e. view)
implementing observer interface registers itself as an observer of the object (i.e. model)
which is an observable. Each time the model (observable) changes, all the registers
observers (there can be many views) are updated.
 According to [61] , Observer-Observable pattern can be used in relation between
the following parts of the application:

• view and controller - the changes in the view cause response in the controller,
• model and view – all the registered views are notified about model’s state change.

The same book mentions different view implementations:
• “model push” vs. “view pull” – the model sends updates to the registered views

or views get information from the model, when it’s needed,
• Multiple view targets – more than one view can be registered to the model, thus

the same data can be represented in many ways,
• “Look but don’t touch” views – when the view does not provide interaction with

the user.

3.4 Standard Commands for Programmable Instruments (SCPI)

 SCPI defines a set of commands to control programmable test and measurement
devices in instrumentation systems. It specifies command structure and syntax, it does not
define underlying hardware and software. Vertical and horizontal programming consistency

 Universal Measurement System with Web Interface

Maciej Lipiński 108

is promoted by the standard. Message consistency between instruments of the same class
(vertical) and between instruments with the same functional capabilities (horizontal)
are defined. An example of vertical consistency is using the same command for reading DC
voltage from several different multimeters. Horizontal consistency is using the same
command to control similar functions across instrument classes. SCPI defines specific
command sets for a given measurement functions (i.e. frequency or voltage),
Thus, frequency measurement can be made in the same way in two oscilloscopes made
by different manufacturers. It is also possible for a SCPI counter to make a frequency
measurement using the same commands as an oscilloscope.
 SCPI commands consist of set commands and query commands (simply called
commands and queries). Commands change instrument settings or perform a specific action.
Queries cause the instrument to return data or information about its status. Most commands
have both forms. The query form is the same as the set form except that it ends with
a question mark. A command message is a command or query name, followed by any
information the instrument needs to execute the command or query. It consists of five
element types defined in Table 15 and presented in Figure 111 [62]

Symbol Meaning
<Header> Command name. Command is a query if the header ends with a question

mark. It may begin with a colon (:) character.
<Mnemonic> A header sub function. Most of headers consist of many Mnemonics

separated by colon (:)
<Argument> A quantity, quality, restriction, or limit associated with the header. Some

command have no argument while others have multiple arguments.
Arguments are separated from the header by a <Space>. Multiple
arguments are separated from one another by <Comma>.

<Comma> A single comma between arguments of multiple-argument commands
<Space> A white space character between command header and argument.

Table 15. Command message elements

Figure 111. Command message elements

SCPI requirements concerning mnemonics’ names:

• Each mnemonic has both a long and a short form. A SCPI instrument shall accept
only the exact short and the exact long forms,

• The instrument shall accept both upper and lowercase characters without distinction
between cases.

SCPI commands are based on a hierarchical structure created according to the style
guidelines. The most important of the requirements are listed below:

1. The lowest node should have the broadest base possible,
2. Tree should be as shallow as possible,
3. A complete tree path shall be unique,
4. In general, parameters should only appear at the leaf nodes of the tree.

For an instrument a “dictionary” of commands is implemented.

 Universal Measurement System with Web Interface

Maciej Lipiński 109

4. Parameters of digital oscilloscope

Bandwidth – frequency range in which the oscilloscope measurement is accurate.
It is indicated by the frequency at which the displayed signal is attenuated by -3dB (reduces
to 70.7%). Well-designed oscilloscopes (i.e. Tektronix, Hewlett-Packard) tend to have flat
bandwidth in entire frequency range. It means that the attenuation of the signal is close
to 0 even at the specification bandwidth. Often, the specification bandwidth of such
oscilloscopes is much less than its actual bandwidth.
 The theoretical bandwidth is based on Nyquist-Shannon sampling theorem which says
that “a signal can be reconstructed [from samples] exactly if the signal is band-limited and
the sampling frequency is greater than twice the signal bandwidth”[63] . It means that
theoretically, to avoid bandwidth degradation in measured signal, oscilloscope must have
a sampling rate two times greater than it’s nominal bandwidth. In practice, high performance
oscilloscopes manage to accommodate sampling rate of 2.5 times bandwidth. However,
the mainstream oscilloscopes usually oversample the bandwidth by a multiple of 4x.

Figure 112 Relation between sampling rate and bandwidth [63]

Vertical Resolution – it is the minimal detectable voltage change, determined by ADC’s
resolution and the input signal range,

Vertical Sensitivity – the smallest voltage the oscilloscope can detect (typically, 2mV/Div)

Dynamic Range – refers to how well the measurement device can detect small signals
in presence of large signals, it is expressed in decibels (dB)

Dynamic Range (dB) = 20log(Vmax/Vmin)
Vmax – maximum voltage being acquired.
Vmin – minimum resolution that can be seen.
Rule of thumb: 1 bit of resolution ~=- 6 dB of dynamic range (10-bit instrument’s theoretical
maximum dynamic range is 60dB

Accuracy - ability of an instrument to represent the true value of a signal. The achievable
accuracy of an oscilloscope (any measurement instrument) is limited by the resolution of

 Universal Measurement System with Web Interface

Maciej Lipiński 110

the ADC. However, the high resolution does not guarantee high accuracy. Factors that
reduce accuracy mostly occur at high and low frequencies.

Gain accuracy – accuracy of amplitude measurement, determines how well oscilloscope
handles high-frequency noise

Offset accuracy – accuracy of offset in DC coupling mode, determines how well
oscilloscope handles low-frequency errors

Horizontal axis resolution – limited by sampling rate. 100MS/sec acquisition rate can
achieve a time resolution of 1/(100MS/sec) = 10ns. Accuracy of horizontal axis can be
reduced by low- and high-frequency errors alike vertical axis. However, this errors are
usually insignificant compared to problems with accuracy of vertical axis.

Time base accuracy – specifies frequency/period measurement instability, is expressed
in parts-per-million (ppm)

Rise time – time needed by the signal to go from a specified low value to a specified high
value. The low value is usually specified as 10% of set height and the high value is specified
by 90% of set height. It describes useful frequency range on an oscilloscope. Pulses with rise
time faster then oscilloscope’s rise time cannot be displayed accurately.

Memory – in most oscilloscopes sampling rate and memory size are intertwined since they
want to fill entire (fixed-size) window with the waveform. In some settings configuration it may
lead to situation where both time and memory are maximized. Since maintaining sampling
rate is more important, entire memory is used. Usually, sampling rate is sustained as long
the scope does not run out of memory to fill the display, otherwise sampling rate
is decreased (bandwidth is therefore memory dependant as well).
In case of UMSWI, sampling rate is always maintained and, if required, the waveform
is smaller than screen display.

Appendix B – FPGA – ARM interface
Example commands Output/input

from/to driver
data format

Proc_fs R/W address Register
name

Variable in FPGA

comment

Echo 1 > reset 1 reset W 0x…00 ARM_reset asynchronous

Reg01[1..0] ARM_trig_src[1..0] 0-ARM; 1-ext; 2-

chan1; 3- chan2

Reg01[2] ARM_time_en 0-disable; 1-enable

 Number(decimal) Config R/W

Reg01[3] ARM_slope 0-rising; 1-falling

Reg01[4] ARM_ARM 0- idle; 1 - ARM Echo 16 > cmd

Echo 32 > cmd

Echo 48 >cmd

ARM

Trig

ARM + Trig

Number(decimal) cmd R/W

0x…10

Reg01[5] ARM_trigger 0- not trigger; 1-

trigger

Reg02[0] ARM_DATA_ACQUIRED 0 – not; 1 - yes 1

2

3

Data acquired

ARMED

Data acquired and armed

 state R 0x…20

Reg02[1] ARM_ARMED 0 – not; 1 – yes

Reg03 ARM_record_len[15..0] 0x…30

Reg04 ARM_record_len[18..16]

Reg05 ARM_timer[15..0] 0x…50

Reg06 ARM_timer[23..16]

Reg07 ARM_delay[15..0]

Echo 20:0:0 > parameters Len:time:delay parameters R/W

0x…70

Reg08 ARM_delay[31..16]

Reg09 ARM_start_RD_addr[15..0] startAddr startRDaddr R/W 0x…90

Reg0A ARM_start_RD_addr[18..16]

Problem with

reading,

MASK=0x0FFF

Reg0B ARM_start_addr_pointer[15..0] 0x…B0

Reg0C ARM_start_addr_pointer[18..16]

Reg0D ARM_stop_addr_pointer[15..0]

 StartAddr stopAddr addressPointers R

0x…D0

Reg0E ARM_stop_addr_pointer[18..16]

 readSingleData R

 read2words R

0x…100 RD_DATA

WR_DATA

 Universal Measurement System with Web Interface

Maciej Lipiński 112

 readXwords R/W

Cat readresult readresult R

Test 0 – special states for writing and reading from

memory

Ilde->write_ssram->read_ssram->completed(waiting

for data to be read)

For this test data outputted by “readresult” is displayed

differently than normal

0x01 – writing address to the memory

0x11 – writing 0x5555 to even and 0xAAAA to odd

addresses on channel 1 and 0x0000 to channel 2

0x21 – writing 0x5555 to even and 0xAAAA to odd

addresses on channel 2 and 0x0000 to channel 1

0x31 – writing 0x0000 to both channals and all

addresses

0xNumber regT[0] ARM_SSRAM_test_0 Test 0

Cat readresult:

addr ->> chan1:

chan2

0x1 ->> 0x2aa: 0x8

Test 1 – everything works as normal, but instead of

reading data from ADC, the data is read from FPGA

(and written to memory),

For this test data outputted by “readresult” is displayed

differently than normal

0x02 – writing address to the memory

0x12 – writing address to channel 1 and 0x0000 to

channel 2

0x22 – writing addresses to channel 2 and 0x0000 to

channel 1

0x32 – writing 0x0000 to both channals and all

addresses

0xNumber regT[1] ARM_SSRAM_test_1 Test 1

Cat readresult:

addr ->> chan1:

chan2

0x1 ->> 0x2aa: 0x8

Test 2 – everything works as normal, but instead of

reading data from ADC, the data is read from FPGA

(and written to memory)

For this test data outputted by “readresult” is displayed

0xNumber

test R/W 0x…110

regT[2] ARM_SSRAM_test_1 Test 1

Cat readresult:

Chan1: chan2

 Universal Measurement System with Web Interface

Maciej Lipiński 113

normal , can be used with applet

0x04 – writing address to the memory

0x14 – writing address to channel 1 and 0x0000 to

channel 2

0x24 – writing addresses to channel 2 and 0x0000 to

channel 1

0x34 – writing 0x0000 to both channals and all

addresses

 regT[7..4] ARM_test_kind Depending on the

test kind

Appendix C – Example Manual

Below, Oscilloscope and Spectrum Analyzer Manual is presented. This manual is available
on the UMSWI’s website and is presented here as an example. The website provides also
SCPI Manual (with example scripts in Matlab) and information concerning UMSWI’s
configuration. The website is included in the CD. It can be also found on author’s homepage
[47]

1. JAVA APPLET
The Oscilloscope and Spectrum Analyzer is a Java Applet and you will need Java Virtual
Machine installed and Java enabled in your browser to have it up and running. For details
how to successfully run applet in your browser see [64] .The recommended browser
to operate the oscilloscope applet is Mozilla Firefox

2. ONLINE/OFFLINE
Applet automatically detects whether it has connection with the server. If something is wrong
with the connection, it is indicated by red sign Device OFFLINE. If everything is ok, there
should be Device ONLINE in blue.

• ONLINE - good for you, it means that everything is connected and installed properly,
just enjoy using. If you want just to test the applet and you don't have any source
of signal, you can ask it to generate signal:

i. click with right button of the mouse on the screen
ii. select Enable test data
iii. choose which waveform you want to see (affects only channel 2)
iv. use the applet as if there was a signal source connected to the device

• OFFLINE - for tests

i. probably you are using the applet on the author's homepage, this one
is not connected to any hardware

ii. if you are using applet located on the ARMputer and it is indicated that
the applet is OFFLINE, something is wrong :(

3. COMPONENTS OF THE GUI

When you open the Oscilloscope Web page, you will see Screen and Control Panel. These
are all you need during normal operation. Control panel enables you to set acquisition
parameters, start/stop acquisition, adjust the view of the results and decide what should be
displayed on the screen. Screen presents results of measurement acquired with
the parameters you wanted. When you start the applet, the screen is empty. It will stay empty
even after the acquisition if you do not enable any of the channels. Except of screen and
control panel, an auxiliary window can be opened by clicking the screen with right button
of the mouse. Auxiliary Panel provides functions which are rarely, i.e. it enables you to see
raw data. Raw data is are the voltage values which were received from the hardware, scaled
by the factor indicated. Spectrum raw data, is the outcome of Fast Fourier Transform
calculation performed on the raw data.

 Universal Measurement System with Web Interface

Maciej Lipiński 115

Figure 113 Oscilloscope & Spectrum Analyzer GUI

4. SCREEN

The screen has multiple usage. In initial state it displays nothing but the grid in oscilloscope-
like window. What is currently displayed on the screen depends on the control panel settings,
in general the screen can show:

• Nothing – when none of the channels is enabled
• Input signal to channel 1 or/and 2
• Spectrum of input input signal to channel 1 or/and 2 along with input signal

to channel 1 or/and 2

Spectrum of a given channel is displayed only if the channel is enabled. Along with spectrum
chart, an appropriate spectrum scales on the screen margin is displayed
(depending on the kind of spectrum, it is either mV or dB scale).
By dragging the screen (pressing left button of the mouse and moving the mouse),
the horizontal and vertical position of signals can be changed.

Figure 114 Oscilloscope & Spectrum Analyzer Screen

 Universal Measurement System with Web Interface

Maciej Lipiński 116

The oscilloscope enables to measure distance in mV and time between two points
on the screen (called “ticks”). It can be enabled on the Control Panel. The mechanism
is explained in the figure below.

Figure 115 Oscilloscope’s “Ticks”

Once the “ticks” are enabled (for specific channel), the cursor of the mouse is fallowed on
the screen by “X”. The fist “X” is red, it is the starting point for distance calculation. When
a place on the screen is clicked, the red “X” is left in this place and a blue “X” appears.
The blue “X” is accompanied with the information about the channel for which the “ticks” are
enabled (different channels can have different volts/div settings, thus the measurement
of distance is different), the voltage and time measured in the way explained in the figure
above. In working with “ticks” the following rolls must be remembered:

• The tick which follows mouse cursor can be set in a place on the screen
by clicking the screen.

• When both ticks are set in a position on the screen (the mouse cursor is “free):
o If red tick is clicked with the mouse cursor, positions of both “ticks” are

reseted and red “X” starts to follow the cursor
o If any place, except red “X”, is clicked, position of blue “X” is reseted, and

it starts following the mouse cursor.
• When the left mouse button is kept pressed, the position of displayed signals can

be changed

5. CONTROL AND AUXILIARY PANELs

Figure 116 Oscilloscope and Spectrum Analyzer’s control and auxiliary panel

 Universal Measurement System with Web Interface

Maciej Lipiński 117

1. Shows whether Applet is connected to the server and hardware (see 1).
2. State of the device:

a. IDLE – initial state,
b. SINGLE –acquisition is running in single mode,
c. AUTO – acquisition is running in auto mode,
d. NORMAL – acquisition is running in normal mode,
e. STOPPED – when acquisition was forced to stop by clicking STOP,
f. Acquiring data – when data is being sent from the server to the applet,
g. New data (disarmed) – Acquisition stopped after successfully acquiring data.

3. Enable to control acquisition:
a. SINGLE – data is acquired one time after trigger occurred,
b. NORMAL – data is acquired each time the trigger occurs until stopped with STOP

button,
c. AUTO – data is acquired continuously, regardless of the trigger occurrence, until

stopped with STOP button,
d. STOP – stops data acquisition.

4. Set TIME/DIV for both channels.
5. Enables measurement of voltage and time with “ticks” for channel 1.
6. Enables display of channel 1.
7. Sets VOLTS/DIV for channel 1.
8. Sets vertical position of channel 1 signal .
9. Sets sampling time (range: 10ns – 250us).
10. Sets record length (maximum record length depend on the sampling time: recLen=

131072 * samplingTime).
11. Changes spectrum scale from mV to dB.
12. Enables spectrum analyzer – spectrums of enabled channels are displayed

on the screen .
13. Sets FREQ/DIV .
14. Changes horizontal position of spectrum.
15. Displays parameters set during latest acquisition – the data which is displayed

on the screen was acquired with this parameters set.
16. Changes horizontal position of signals.
17. Sets delay time in [ns] – delay time is an interval between trigger occurrence and

acquisition start.
18. Enables delay – it is not enough to set the delay time in 17, it needs to be enabled

to here.
19. Sets the edge on which trigger should occure.
20. Trigger source:

a. Button – acquisition is started when “Trigger” button is pressed,
b. Chan2 – acquisition is started when signal on channel 2 fulfils “trigger conditions”

(trigger level and edge),
c. Ext - acquisition is started when falling/rising edge is detected in external signal.

21. Starts acquisition when trigger source is set to “button”.
22. Sets trigger level when trigger source is set to “chan 1” or “chan 2”.
23. Send reset signal to FPGA logic.
24. Data read from the device is multiplied by this factor.
25. Displays “raw data” in a separate window.
26. Enables to test the applet without any source of signal – signal is generated by

the applet itself as if when offline.
27. enables to choose kind of generated signal on channel 2 (only).

 Universal Measurement System with Web Interface

Maciej Lipiński 118

Appendix D – Developer’s web page

This is a content of the web page existing on author’s web site [65] which is meant for
UMSWI developers. It contains all the codes and binaries used by the system and explains
how to used them. It is included on the CD as well.
1 Downloads:

• Binaries (Download):
o loaderML.bin - Bootloader, source code (modified from TWarm, which in turn was

modified from Flabio Ribeiro (etc.) - this bootloader was modified to start the Linux
directly. It means that, in normal operation, the zImage is copied from flash and run
by bootloader (not U-Boot), it is recommended to upload new zImage to flash using
bootloader. In case of development U-Boot can be started by choosing menu option 4

o zImageML - kernel + rootfs in one zImage (Linux-2.6.19, taken from TWarm, modified
configuration, customized rootfs, includes all the UMSWI's utilities in /usr/AMRsocpe
folder)

• Configuration (Download):
o busybox.config - configuration used for Busybox-1.00
o kernel.config - configuration used for Linux-2.6.19 (patched and modified by Poles

in TWarm
• Oscilloscope and Spectrum Analyzer Java Applet source code (Download) - the project

was developed in Eclipse, it needs javac at least 1.5. It was painfully learnt that earlier
version are not enough. The compilation should be done under Linux.

o src/ - folder with sources
o bin/ - folder with compiled classes

• Bootloader's source code (Download)
• SCPI server (Download):

o src/ - folder with sources
o doc/ - documentaton generated by doxygen, available here as well
o scpi_server - binary (to run SCPI Server on port 2020 : ./scpi_server -s 2020)

• Linux Device Driver providing communication with FPGA (Download):
o src/ - folder with sources
o fpga.ko - driver compilled as module (to instal issue: insmod fpga.ko)

• FPGA Logic (Download) - it is a project in ALTERA Quartus II - the entire VHDL code is
in the file: acquisition_controller.vhd, the binary file is here

• FPGA configuration application (Download)
o src/ - folder with sources
o config - complied binary (to load mag_fpga.rbf: ./config mag_fpga.rbf)

• MMC/SD content(Download) - Content of MMC/SD card is initially equal to
/usr/ARMscope folder in rootfs,

• Root file system (Download)

2 Development environment
The project is being developed with the workstation running Debian distribution of Linux
(GOOD BLESS Debian :). The cross-compilation tool used during the development was
intalled as a debian package using Synaptic Package Manager . The package was prepared
by Free Electrons. I followed this, see Lab 3- Cross-compilation. Remember to export:

export PATH=/usr/local/uclibc-0.9.28-2/arm/bin/:$PATH
export CROSS_COMPILE=arm-linux-
export ARCH=arm

 Universal Measurement System with Web Interface

Maciej Lipiński 119

3 MMC/SD card content
Tools and data which are used by the system are stored in /usr/ARMscope folder and
on MMC/SD card. Its organization is presented below:

Figure 117 MMC/SD card content

FPGAconfig/ holds the .rbf file with FPGA logic configuration and a small application which

configures FPGA.

• FPGAdriver/ holds FPGA Linux Device Driver compiled as a loadable module
and a script which loads the driver and creates entry in /dev

• scpi/ _server holds SCPI server application
• www/ - the UMSWI website

o cgi-bin/ - CGI scripts
� oscilloscope/ - used in applet-driver communication
� systemConfig/ - used for system configuration

o oscilloscope/ - oscilloscope and spectrum analyzer applet
o data/ - data available on the website, i.e. Matlab scripts
o images/ - images used on the website

• data/ - holds information which needs to be stored between boots, i.e. default IP
• start is a script which starts UMSWI utilities

4 Linux start-up
During the development phase, both loaders (Bootloader and U-boot) were used. U-boot
passes to kernel boot parameters and PHY parameters (i.e. MAC address). To enable
booting the kernel and root file system from flash memory without U-Boot, modifications
in BusyBox’s configuration and TwARM's bootloader were needed. A tool enabling MAC
address to be set when Linux is on (Networking Utilities ---> ifconfig/Enable option "hw"
(ether only)) was added in BuysBox configuration and Linux start-up script (/etc/inittab) was
appended with the line which sets up MAC address. The loader was modified to include

default Linux start after short delay. Modified loader’s menu in presented in the picture .

Starting u-boot is still possible , since it can be useful for further development and there
is enough space in the flash memory. However, a modification was made to the address
in which the u-boot is started.

Figure 118 Bootloader’s menu

 Universal Measurement System with Web Interface

Maciej Lipiński 120

UMSWI specific startup operations are done in three steps:

• 1. The MMC/SD card with UMSWI utilities is attempted to be mounted
in /usr/ARMscope/ location. The /usr/ARMscope/ folder hold all the custom-made
UMSWI utilities. The mounting is done in /etc/init.d/rcS system initialization script

• 2. httpd web server is started as "respawn" (/etc/inittab file)
• 3. /usr/ARMscope/start script is called (in /etc/inittab) . This script is used for

the UMSWI utilities initialization and can be modified by the user easily. It starts
the following initialization (by calling appropriate scipts):

o Configures FPGA (config_FPGA script)
o Loads FPGA driver (load_driver script)
o Starts SCPI Server if Enabled (start_scpi script)
o Sets the default IP (set_IP script)

The following Linux start-up were prepared appropri ately
/etc/inittab

/etc/inittab

Copyright (C) 2001 Erik Andersen <andersen@codepoet.org>

Note: BusyBox init doesn't support runlevels. The runlevels field is
completely ignored by BusyBox init. If you want runlevels, use
sysvinit.

Format for each entry: <id>:<runlevels>:<action>:<process>

id == tty to run on, or empty for /dev/console
runlevels == ignored
action == one of sysinit, respawn, askfirst, wait, and once
process == program to run

Startup the system
null::sysinit:/sbin/ifconfig eth0 hw ether 00:08:03:7a:3e:16
null::sysinit:/sbin/ifconfig lo 127.0.0.1 up
null::sysinit:/sbin/route add -net 127.0.0.0 netmask 255.0.0.0 lo
null::sysinit:/sbin/ifconfig eth0 192.168.1.101 up
null::sysinit:/sbin/route add -net 192.168.1.101 netmask 255.255.255.0 eth0

main rc script
::sysinit:/etc/init.d/rcS

#start ARMscope utilities

null::sysinit:/usr/ARMscope/start
null::respawn:/usr/sbin/httpd -h /usr/ARMscope/www/

 Universal Measurement System with Web Interface

Maciej Lipiński 121

Set up a couple of getty's
#tty1::respawn:/bin/runterm.sh
#tty2::respawn:/sbin/getty 38400 tty2

Put a getty on the serial port
ttyS0::respawn:/sbin/getty -L ttyS0 115200 vt102
#::respawn:/bin/sh
#::respawn:/bin/login -- root

#run application
#ttyS0::once:/mnt/flash01/startup

set up stuff for logging
#tty4::respawn:/usr/bin/tail -f /var/log/messages

Stuff to do for the 3-finger salute
::ctrlaltdel:/sbin/reboot

Stuff to do before rebooting
null::shutdown:/bin/umount -a -r

/etc/init.d/rcS

#!/bin/sh

mount -t proc none /proc
#mount -t devpts none /dev/pts

#echo 'mounting /usr/ARMscope/'
sleep 3
mount -t vfat /dev/mmcblk0 /usr/ARMscope/
sleep 3

Sleep is needed to allow Linux to "see" the mmcblk0 device and later to mount it.
 /etc/fstab

/etc/fstab: static file system information.

<file system> <mount point> <type> <options> <dump> <pass>
/dev/root / auto defaults,errors=remount-ro 0 0
proc /proc proc defaults 0 0
/dev/mmcblk0 /usr/ARMscope vfat defaults 0 0

5 ARMscope package

Everything to build zImage should be available here: Download(270MB !!!!)
This package is located (not entirely legaly) on EiTI's server mion, the transfer is not good
and it may be deleted by admin at any time

 Universal Measurement System with Web Interface

Maciej Lipiński 122

If you manage to download it (CONGRATULATIONS), this is how the zImage can be
created:
5.1 Development environment
See 2 Development Environment to know how to install cross compilation toolchain.
Don't remember to export environmental variables:

$export PATH=/usr/local/uclibc-0.9.28-2/arm/bin/:$PATH
$export CROSS_COMPILE=arm-linux-
$export ARCH=arm

Things will need to be done as root ($su). The ARMscope package needs to be untarred in
convenient location, in my case in /home/maciex/armbuild ($tar -xvvf armscope.v8).
The package contains the following stuff:

• linux-2.6.19 - patched, appropriately modified and configured kernel
• busybox-1.00 - configured Busybox
• config - configuration files for Linux and Busybox
• loader_ML - source code of modified Bootloader
• root_fs - root file system, the one which is compiled into zImage
• SD_card - content which should be copied to SD card
• binaries - compiled Bootloader and zImage

5.2. Configuration and compilation of busybox
If Busybox needs to be compiled (usually it's not the case), the location of its instalation
needs to be indicated.

$cd armscope.v8/busybox-1.00/
$make menuconfig

Set location of root_fs (in my case: /home/maciex/armbuild/armscope.v8/root_fs)
in Instalation Options

$make clean
$make

5.3. Configuration and compilation of kernel
Before compiling kernel, its configuration needs to be change, so that the root_fs folder
location is indicated

$cd armscope.v8/linux-2.6.19/
$make xconfig

Go to: General setup --->Initramfs source file(s): and set the location (in my case:
/home/maciex/armbuild/armscope.v8/root_fs)
Save changes.

$make clean
$make
.........Wait..........
zImage is in: arch/arm/boot

 Universal Measurement System with Web Interface

Maciej Lipiński 123

Appendix D – Additional Materials on the Accompanyi ng CD
Location Content

Bibliography/ All the articles, datasheets, information which is in the
“Bibliography” list and could be legally downloaded

Binaries/ Binaries for UMSWI
SD_card/ Content of MMC/SD card which should be insterted to

the device
Tests Test data, Matlab scripts with results interpretation
Development/ Set of tools, codes etc which can be used to further

develop UMSWI
Environment/

Patched and configured Linux kernel, Busybox, u-boot,
Bootloader, prepared root file system. With very few
changes in configuration (setting the right paths) it can
be used to create binaries for UMSWI

FPGAconfig/ Application used for FPGA configuration
bin/ Binary
src/ Source code

FPGAdriver/ FPGA Linux Device Driver – used for communication
between Linux User Space and FPGA Logic

bin/ Cross-compilled Linux Module
src/ Source code

doc/ Doxygen generated documentation
FPGAlogic/ FPGA logic including Communication and Data

Acquisition Management Logics
bin/ rbf file
src/ VHDL source code

QuartusProject/ Project in Quartus used for FPGA logic development
(with pins assigned)

JavaApplet/ Oscilloscope and Spectrum Analyzer Java applet
bin/ Binaries (compiled under Linux with java version

“1.5.0_14”)
src/ Source code
EclipseProject/ Project in Eclipse used for applet development

doc/ Javadoc documentation
SCPIserver/ SCPI Server

bin/ Crosscompiled for ARM
src/ Source code

doc/ Doxygen generated documentation
WWWforDevelopers/ UMSWI website as is on author’s homepage, it includes

additional page for developers

WWWforUMSWI/ UMSWI website embedded in the device
MaciejLipinski.doc Master Thesis (MS World)
MaciejLipinski.pdf Master Thesis (pdf)

UMSWIwebsite
Shortcut to UMSWI website (as is provided by the
device)

UMSWIdevelopersWebsite
Shortcut to developers’ UMSWI website (as is on the
authros’s website)

 Universal Measurement System with Web Interface

Maciej Lipiński 124

Appendix E – List of Figures
Figure 1 e*Scope basic mode
Figure 2 e*Scope advanced mode
Figure 3 Remote control of Agilent Analyzer
Figure 4 BenchLink applet
Figure 5 BitScope instrument and GUI
Figure 6 BitScope Model 100 architecture
Figure 7 UMSWI architecture and dataflow
Figure 8 General UMSWI architecture
Figure 9 UMSWI architecture
Figure 10 UMSWI architecture
Figure 11 Acquisition and readout control and dataflow
Figure 12 UMSWI architecture
Figure 13 Communication between FPGA and ARM
Figure 14 UMSWI architecture
Figure 15 Choice of technologies for Web Interface of UMSWI []
Figure 16 Oscilloscope and Spectrum Analyzer Web architecture
Figure 17 UMSWI’s architecture according to MVC
Figure 18 Web User Interface architecture
Figure 19 UMSWI architecture
Figure 20 SCPI example command
Figure 21 SCPI server architecture
Figure 22 UMSWI architecture [31]
Figure 23 Layout of cross-development environment [26].
Figure 24 UMSWI development setup
Figure 25 root filesystem hierarchy
Figure 26 Busybox configuration
Figure 27 Linux kernel configuration
Figure 28 Booting sequence with initramfs [, page 73]
Figure 29 Modified loader’s menu
Figure 30 /etc/init.d/rcS system initialization script
Figure 31 /etc/inittab file
Figure 32 /usr/ARMscope/start script
Figure 33 UMSWI utilities organization
Figure 34 Data acquisition and readout design
Figure 35 Shows how to connect a 16-bit device without byte access on NSC2 []
Figure 36 Interpretation of NRD/NWR Setup, Pulse Length and NWR/NRD Hold parameters
Figure 37 Communication Logic flowchart
Figure 38 FPGA-ARM communication test
Figure 39 FPGA-ARM communication test
Figure 40 ARM-FPGA interface
Figure 41 Finite state machine
Figure 42 Measured data flow
Figure 43 Trigger detection process
Figure 44 File operations structure
Figure 45 Structure which represents FPGA device.
Figure 46 Structure storing acquisition parameters
Figure 47 Function which generates data when /proc/fpga/cmd file is read

 Universal Measurement System with Web Interface

Maciej Lipiński 125

Figure 48 Implementation of start method in the seq_file interface
Figure 49 Implementatin of seq_next
Figure 50 seq_file show method which outputs measurement data to user space
Figure 51 Seq_operations structure
Figure 52 File operations structure
Figure 53 Proc open method
Figure 54 Implementation of write_proc function
Figure 55 procfs_register function
Figure 56 ioctl driver method
Figure 57 ioctl data structures
Figure 58 2 words (32-bits) FPGA IO functions
Figure 59 Using FPGA IO functions
Figure 60 Implementation of read/write ARM register functions
Figure 61 Example CGI scripts with a detailed description [31].
Figure 62 Design of UMSWI web site layout and structure
Figure 63 MVC implementation design
Figure 64 Class diagram of Model related classes
Figure 65 Implementation of HTTP Tunnelling and GET requests
Figure 66 Forming URL request which sends parameter to the hardware
Figure 67 Final GUI design
Figure 68 UML Class Diagram of View-related classes
Figure 69 UML Diagram describing applets’ hardware interfacing []
Figure 70 UMSWI configuration and management web page layout
Figure 71 Example Java Script script using CGI
Figure 72 SCPI command message elements
Figure 73 SCPI Server design
Figure 74 Communication layers
Figure 75 Command structure
Figure 76 C implementation of SCPI dictionary
Figure 77 Defining nodes relations and function associations
Figure 78 Template of function implementing command’s logic
Figure 79 Example SCPI log file
Figure 80 Explanation of parsing and decoding process
Figure 81 Debugging FPGA
Figure 83 Matlab test of SCPI Server
Figure 84 Test set-up
Figure 85 First amplitude accuracy test (final_test_1.m)
Figure 86 Amplitude attenuation for high frequencies (final_test_2.m)
Figure 87 Amplitude attenuation at 10Mhz for various amplitude values (final_test_3.m)
Figure 88 Offset error
Figure 89 Minimal input voltage test at 10 Hz
Figure 90 Minimal input voltage test at 10 kHz
Figure 91 Signal frequency and period relative error(final_test_4.m)
Figure 92 Rising time measurement (final_test_5.m)
Figure 93 Spectrum analyzer test (final_test_6.m)
Figure 94 Frequency analysis done with Matlab script (myFFTplot_1.m)
Figure 95 Frequency analysis conducted with UMSWI Spectrum Analyzer
Figure 96 Sine and square signal measurement at 10 MHz and 20 MHz
Figure 97 Input signal exceeding voltage range
Figure 98 Acceleration of particles with AC voltage radio frequency RF [].

 Universal Measurement System with Web Interface

Maciej Lipiński 126

Figure 99 Four bunches of protons, h=7
Figure 100 Eight protons in bucket, h=8
Figure 101 Bunch splitting
Figure 102 Single bunch, h=1
Figure 103 All 16 buckets full
Figure 104 Two buckets filled with bunches of varied proton number
Figure 106 Acquisition hardware architecture
Figure 107 CGI process explanation
Figure 108 Architecture of a generic Linux system [27]
Figure 109 Benefits of using uClibc library [29]
Figure 110 MVC architecture [60]
Figure 111. Command message elements
Figure 112 Relation between sampling rate and bandwidth [63]
Figure 113 Oscilloscope & Spectrum Analyzer GUI
Figure 114 Oscilloscope & Spectrum Analyzer Screen
Figure 115 Oscilloscope’s “Ticks”
Figure 116 Oscilloscope and Spectrum Analyzer’s control and auxiliary panel
Figure 117 MMC/SD card content
Figure 118 Bootloader’s menu

 Universal Measurement System with Web Interface

Maciej Lipiński 127

Appendix F – List of Tables

Table 1 Hardware components of UMSWI
Table 2 UMSWI development tools
Table 3 FPGA logic design components according to frequency affiliation
Table 4 Communication SMC settings
Table 5 Interpretation of Wait State parameter
Table 6 Acquisition process
Table 7 Description of FSM states.
Table 8 Drivers structure
Table 9 ioctl/proc interface
Table 10 SMC configuration
Table 11 GET requests: _name_ is the name of hardware parameter
Table 12 Devices used during tests
Table 13 Test of Spectrum analyzer
Table 14 UMSWI parameters
Table 15. Command message elements

 Universal Measurement System with Web Interface

Maciej Lipiński 128

Bibliography

[1] Linksys by Cisco web site: www.linksysbycisco.com
[2] Livebox by TP.SA web site: www.tp.pl
[3] S. Gundavaram, CGI Programming on the World Wide Web, First Edition,O`Reilly,1996
[4] K. Tatroe, R. Lerdorf, P. MacIntyre, Programming PHP, 2nd Edition, O’Reilly, 2006
[5] Tektronix, TG700 Remote Contro land Connectivity
[6] Tektronix web site: http://www.tek.com
[7] Tektronix, e*Scope Remote Control Puts Network-Connected Oscilloscope on Your PC

Desktop
[8] Tektronix’s e*Scope Server page: http://connect.tek.com/escope
[9] Agilent, BenchLink Web Remote Control Software for the PSA Series Spectrum

Analyzers, ESA-E and ESA-L Series Spectrum Analyzers, E7400A Series EMC
Analyzers * Option 230

[10] Agilent web site providing BenchLink Web Control Software trial version :
 http://wireless.agilent.com/videos/econtent/Remote/
[11] BitScope official web site, http://www.bitscope.com/
[12] BitScope, BitScope 50 Pocket Analyzer
[13] PowerPC, http://www.power.org/home
[14] ARM http://www.arm.com/
[15] Infiniium 800 Series Oscilloscopes
[16] Altera Ltd. http://www.altera.com/index.jsp
[17] Xilinx, http://www.xilinx.com/
[18] ATMEL http://www.atmel.com/
[19] Lattice Semiconductor Corporation, http://www.latticesemi.com/
[20] Creotech Ltd. www.creotech.pl , Indiry Gandhi 35/226, 02-776 Warszawa
[21] ALTERA, Cyclone FPGA Family, 2003
[22] Analog Devices, 10-bit, 65/80/105 MSPS, 3V A/D Converter
[23] ISSI, 128K x 32, 128K x 36 Synchronous Pipelined Static RAM, 2004
[24] TANGO, website: www.tango-controls.org
[25] Experimental Physics and Industrial Control System, website: www.aps.anl.gov/epics
[26] C. Hallinan, Embedded Linux Primer: A practical, Real-World Approach, Prentice Hall,

2006
[27] Karim Yaghmour, Building Embedded Linux Systems, O'Reilly, 2003
[28] P.Raghavan, A. Lad, S. Neelakandan, Embedded Linux System Design and
 Development, Auerbach Publications,2006
[29] Thomas Petazzoni, Michael Opdenacker, Embedded Linux kernel and driver
 development, Free Electrons, 2008, http://free-electrons.com/
[30] J. Corbet, A. Rubini, G. Kroah-Hartman, Linux Device Drivers, Third Edition, USA 2005
[31] Lipinski M. and Kasprowicz G. (2009). Universal Measurement System with Web
 Interface. R.S.Romaniuk, K.S.Kulpa (ed.), Photonics Applications in Astronomy,
 Communications, Industry, and High-Energy Physics Experiments 2009; vol.7502.

Proc.SPIE, USA
[32] Busybox Project homepage www.busybox.net/
[33] Craig Hollabaugh, Embedded Linux: Hardware, Software, and Interfacing, Addison

Wesley, 2002
[34] Wookey and Paul Webb, Guide to ARMLinux for Developers, Aleph One Ltd., 2002
[35] Free Electrons Embedded Linux Experts, http://free-electrons.com/
[36] Pelos, TwARM Atmel AT91RM9200 Eval Board, www.twarm.pelos.pl
[37] R. Russell, D. Quinlan, C. Yeoh, Filesystem Hierarchy Standard, FHS Group, 2004

 Universal Measurement System with Web Interface

Maciej Lipiński 129

[38] The Linux Kernel Archives, http://kernel.org
[39] AT91 Linux 2.6 Patches, http://maxim.org.za/at91_26.html
[40] M. Odpenacker, T. Petazzoni, Embedded Linux kernel usage, Free Electrons, 2009,
 http://free-electrons.com/
[41] Das U-Boot – the Universal Boot Loader, http://www.denx.de/wiki/U-Boot
[42] RedBoot Debug and Bootstrap Firmware, http://www.ecoscentric.com/ecos/redboot.shtml
[43] MicroMonitor, http://microcross.com/html/micromonitor.html
[44] Darrel Harmon’s Homepage: http://dlharmon.com/
[45] ATMEL, ARM920T-based Microprocessor: AT91RM9200
[46] Eric A. Meyer, CSS: The Definitive Guide, 3rd Edition, O’Reilly Media, Inc.
[47] Development website of UMSWI: http://home.elka.pw.edu.pl/~mlipins1/myWeb/index.html
[48] Tsan-Kuang Lee Sound Spectrum Java Demo, http://www.ling.upenn.edu/~tklee/Projects/dsp/
[49] Customized J2EE training, Using Applets as Front Ends to Server-Side Programs, Marty
 Hall, 2007
[50] Lipinski M. and Kasprowicz G. (2009), Control of “Universal Measurement System with
 Web Interface” as an example of universal embedded system control, paper and
 presentation at ICSE2009 Conference, UK
[51] Quartus II Handbook Version 9.0, Altera Corporation, 2009
[52] MatLab – produced by The MathWorks Company, www.mathworks.com
[53] European Organization for Nuclear Research, http://www.cern.ch
[54] Shin-ichi Adachi, Pump-Probe Experiment, Cheiron 2007
[55] J. Travis, J. Kring, LabVIEW for everyone: graphic Programming Made Easy and Fun,
 Prentice Hall, 2006
[56] VXI-11 TUTORIAL and RPC Programming Guide, ISC Electronics
[57] Standard Instrument Control Library, User’s Guide, Test & Measurement Systems Inc.,
 2003
[58] Jason Hunter, Java Servlet Programming, 2nd Edition, O’Reilly Media, Inc., 2003
[59] D. Riekhonf, K. Fligg, How to Control a Robot Over the Internet, Sys-Con Media, 2000
[60] Mark Wutka, Special Edition Using Java 2 Enterprise Edition, QUE, 2001,
 http://csis.pace.edu/~bergin/mvc/mvcgui.html
[61] Stephen Sterling, Olav Massem, Applied Java Patterns, Printice Hall, 2001
[62] Tektronix Prorammer Manual, TDS 200-Series Digital Real-Time Oscilloscope
[63] Phil Stearns, Sampling rate’s impact on oscilloscope bandwidth, Electronic Products,

www.electronicproducts.com
[64] How to run Java Applet in your Web browser,
 http://web.cecs.pdx.edu/~ps/CapStone03/dynvis/getplugin.htm
[65] UMSWI developer’s web page,

http://home.elka.pw.edu.pl/~mlipins1/myWeb/developers.html

