Introduction	Reliability in WRN	Summary	Q&A

Reliability in White Rabbit Network

Maciej Lipiński

Hardware and Timing Section / Institute of Electronic Systems CERN / Warsaw University of Technology

> 1st June 2012 Wilga Symposium

Introduction	Reliability in WRN	Summary	Q&A

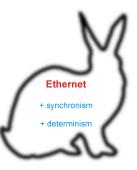
Outline

Reliability in WRN

- Definition
- Data Redundancy
- Topology Redundancy

3 Summary

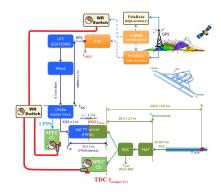
Introduction	Reliability in WRN	Summary	Q&A
●○○		000	00
Mhat is Mhi	ta Rabbit?		


- Accelerator's control and timing
- International collaboration
- Based on well-known technologies
- Open Hardware and Open Software
- Main features:
 - transparent, high-accuracy synchronization
 - low-latency, deterministic data delivery
 - designed for high reliability
 - plug & play

Introduction	Reliability in WRN	Summary	Q&A
●o⊙	০০০০০০০	ooo	00

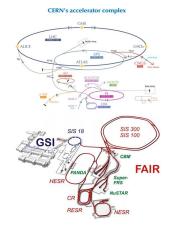
What is White Rabbit?

- Accelerator's control and timing
- International collaboration
- Based on well-known technologies
- Open Hardware and Open Software
- Main features:
 - transparent, high-accuracy synchronization
 - low-latency, **deterministic** data delivery
 - designed for high reliability
 - plug & play



Introduction	Reliability in WRN	Summary	Q&A
000			

• Existing applications:


 CERN Neutrino to Gran Sasso

Introduction	Reliability in WRN	Summary	Q&A
000			

- Existing applications:
 - CERN Neutrino to Gran Sasso
- Future applications:
 - CERN and GSI

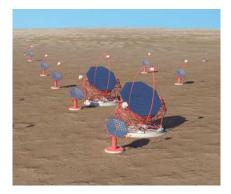
Introduction	Reliability in WRN	Summary	Q&A
000			

- Existing applications:
 - CERN Neutrino to Gran Sasso
- Future applications:
 - CERN and GSI
 - HiSCORE: Gamma&Cosmic-Ray experiment (Tunka, Siberia)

- > Institute for Nuclear Research of the Russian Academy of Sciences
- > Moscow State University
- Irkutsk State University

Introduction	Reliability in WRN	Summary	Q&A
000			

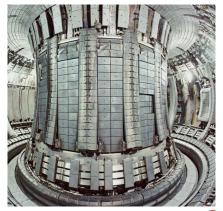
- Existing applications:
 - CERN Neutrino to Gran Sasso
- Future applications:
 - CERN and GSI
 - HiSCORE: Gamma&Cosmic-Ray experiment (Tunka, Siberia)
 - The Large High Altitude Air Shower Observatory (Tibet)



Introduction	Reliability in WRN	Summary	Q&A
000			

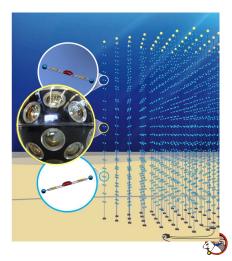
Existing applications:

- CERN Neutrino to Gran Sasso
- Future applications:
 - CERN and GSI
 - HiSCORE: Gamma&Cosmic-Ray experiment (Tunka, Siberia)
 - The Large High Altitude Air Shower Observatory (Tibet)
- Potential applications:
 - Cherenkov Telescope Array



Introduction	Reliability in WRN	Summary	Q&A
000			

Existing applications:


- CERN Neutrino to Gran Sasso
- Future applications:
 - CERN and GSI
 - HiSCORE: Gamma&Cosmic-Ray experiment (Tunka, Siberia)
 - The Large High Altitude Air Shower Observatory (Tibet)
- Potential applications:
 - Cherenkov Telescope Array
 - ITER

Introduction	Reliability in WRN	Summary	Q&A
o●o	০০০০০০০	ooo	00

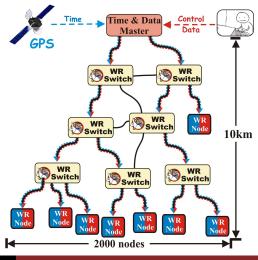
- Existing applications:
 - CERN Neutrino to Gran Sasso
- Future applications:
 - CERN and GSI
 - HiSCORE: Gamma&Cosmic-Ray experiment (Tunka, Siberia)
 - The Large High Altitude Air Shower Observatory (Tibet)
- Potential applications:
 - Cherenkov Telescope Array
 - ITER
 - European deep-sea research infrastructure (KM3NET)

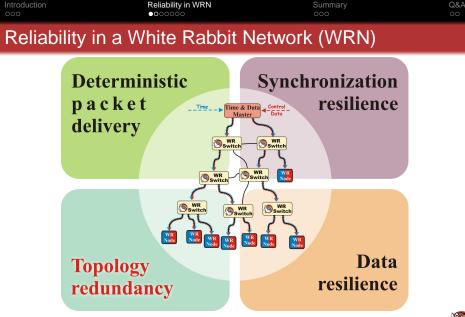
Introduction	Reliability in WRN	Summary	Q&A
000			

White Rabbit – enhanced Ethernet

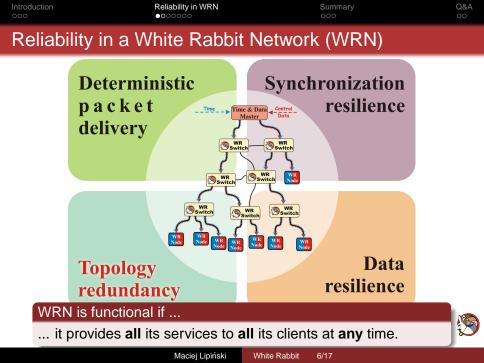
Two separate services (enhancements to Ethernet) provided by WR:

- High accuracy/precision synchronization
- Deterministic, reliable and low-latency Control Data delivery

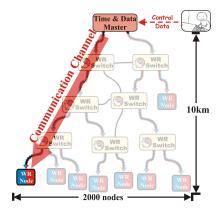



Introduction	Reliability in WRN	Summary	Q&A
000			

White Rabbit – enhanced Ethernet


Two separate services (enhancements to Ethernet) provided by WR:

- High accuracy/precision synchronization
- Deterministic, reliable and low-latency Control Data delivery


Summary Q&A

Control Data

- Two types of data:
 - Control Data (High Priority, HP)
 - Standard Data (Best Effort)

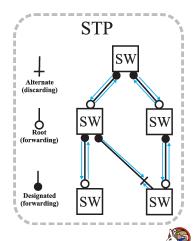
Characteristics of Control Data

- Sent in Control Messages
- Sent by Data Master(s)
- Broadcast (one-to-alot)
- Deterministic and low latency
- Reliable delivery

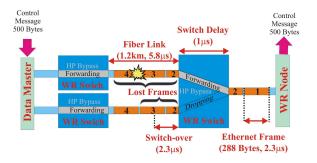
Introduction	Reliability in WRN	Summary	Q&A
	000000		

Data Redundancy: Forward Error Correction (FEC)

- Re-transmission of Control Data not possible
- Forward Error Correction additional transparent layer:
 - One Control Message encoded into N Ethernet frames,
 - Recovery of Control Message from any M (M<N) frames
- FEC can prevent data loss due to:
 - bit error
 - network reconfiguration



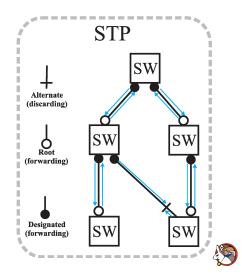
Tanalası Dashus			
000	0000000	000	00
Introduction	Reliability in WRN	Summarv	Q&A


Topology Redundancy

- Standard Ethernet solution: Rapid/Multi Spanning Tree Protocol
- Reconfiguration time: ≈ 1s (best: milliseconds)
- 1s = \approx 82 000 Ethernet Frames lost
- Extensive research:
 - existing standards
 - academic experts
 - expert companies
- Solution:
 - take advantage of FEC
 - speed up (R/M)STP->eRSTP

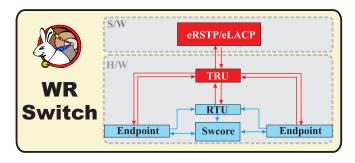
Introduction	Reliability in WRN	Summary	Q&A
000	○○○○●○○	ooo	00
eRSTP + FEC			

- eRSTP+FEC=seamless redundancy <=> max 2 frames
- 500 bytes message (288 byte FEC) max re-conf ≈2.3us

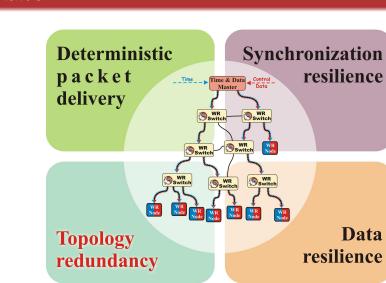


Introduction	Reliability in WRN	Summary	Q&A
	0000000		

enhanced Rapid Spanning Tree Protocol (eRSTP)


- RSTP's a priori information (alternate/backup)
- Limited number of topologies
- Drop only on reception within VLAN, except self-sending
- Take advantage of broadcast characteristic of Control Data
- Do it in hardware !!!

Introduction	Reliability in WRN	Summary	Q&A
	000000		


Topology Resolution Unit (TRU)

- Universal and decoupled unit for topology resolution
- Common firmware base for many different solutions
- Two solutions considered:
 - enhanced Rapid Spanning Tree Protocol (eRSTP)
 - enhanced Link Aggregation Control Protocol (eLACP)

Introduction	Reliability in WRN	Summary	Q&A
000		●oo	00
Status			

Introduction	Reliability in WRN	Summary	Q&A
000		o●o	00

Status

Deterministic Packet Delivery

- Cut-through
 - Separate resources
 - Output queuing
 - Optimization

Synchronization Resilience

WRPTP support improvements for further study
Hardware support

Topology redundancy

- \checkmark
- Extensive study
- Hardware(eRSTP)
- Software(eRSTP)

Data Resilience

FEC Encoder - more work FEC Decoder

Introduction	Reliability in WRN	Summary	Q&A
000		oo●	00

Conclusions

- Timing-wise WR is working now focus on data
- Interest of standardization bodies: WR presented to ITU-T and IEEE
- First deployment at CERN of WR timing and control network for AD
- Increasing number of applications
- First commercially available WR switch by the end of 2012

Introduction 000	Reliability in WRN	Summary ୦୦୦	Q&A ●○

Questions and answers

[One more slide after Q&S]

Introduction

Reliability in WRN

Summar

Q&A ○●

Piotr Doniec (1987-2012)

Maciej Lipiński

White Rabbit 17/1