Robustness in White Rabbit

Maciej Lipinski

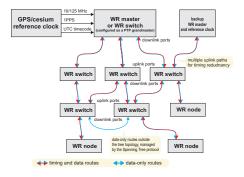
BE-CO Hardware and Timing section CERN, Geneva, Switzerland PERG, Institute of Electronic Systems Warsaw University of Technology, Warsaw, Poland

May 27, 2011

Robustness

What is a robust White Rabbit Network Naming Conventions Areas of Consideration Requirements

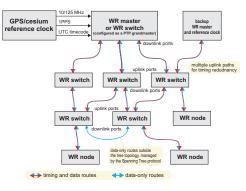
Areas of Consideration


Determinism Clock Resilience Data Resilience Monitoring and Diagnostics

What is a robust White Rabbit Network Naming Conventions Areas of Consideration Requirements

Definition

A White Rabbit Network (WRN) is considered robust only if all the WR nodes connected to the network always receive data on time and are always synchronized with the required accuracy. The amount of lost frames in a given period of time never exceeds the upper bound.



What is a robust White Rabbit Network Naming Conventions Areas of Consideration Requirements

Naming Conventions

- Granularity Window (GW).
- Information distributed over WRN:
 - Control Data Control Messages (CM),
 - Clock WR PTP + SyncE,
 - Standard Data all the other traffic,
- Class of Service and Quality of Service (CoS and QoS),
- High Priority traffic (HP),
- Standard Priority traffic (SP).
- Forward Error Correction (FEC).

What is a robust White Rabbit Network Naming Conventions Areas of Consideration Requirements

Areas of Consideration

- Determinism
- Clock Resilience
- Data Resilience
- Monitoring and Diagnostics

What is a robust White Rabbit Network Naming Conventions Areas of Consideration Requirements

Requirements

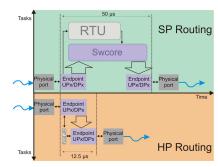
Requirement	Value(s)		
	GSI	CERN	
Granuality Window	$100 \mu s$	$1000 \mu s$	
Maximum Link Length	2km	10km	
Control Message Size	200-500 bytes	1200 - 5000 bytes	
Synchronization accuracy	probably 8ns	most nodes $1\mu s$	
		few nodes 2ns	
Control Message loss rate	1 per year (?)	1 per year (?)	

Determinism Clock Resilience Data Resilience Monitoring and Diagnostics

Delivery Delay Estimation

- Control Message of 500 Bytes is encoded with FEC into 4 Ethernet frames of 288 Bytes.
- Store-and-Forward implemented in SWCore is not sufficient for GSI's GW (100*us*).

CM size	CM Delivery Delay		
	GSI	CERN	
200 bytes	92.2µs	$132.2 \mu s$	
500 bytes	228.7µs	268.3µs	
1500 bytes	272.2µs	312.2µs	
5000 bytes	349.3µs	389.3µs	

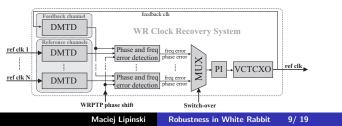

	Enc	oding		0.2µs
Sending Link	Sending			12.µs+3x2.3µs=19.1µs
Receiving		Sending Link	Sending	
Routing Sending	Receiving Routing	Receiving	Link	2.5µs
Link	Sending	Routing Sending	Receiving Routing	2.3us+5x12.2us=63.3us
Receiving	Link	Link	Sending	
Routing Sending	Receiving Routing	Receiving	Link	2.5µs
Link	Sending Link	Routing Sending	Receiving Routing	2.3µs+5x12.2µs=63.3µs
Receiving Routing	Receiving		Sending	0.5
Sending	Routing Sending	Receiving Routing	Receiving	2.5µs
Link Receiving	Link	Sending	Routing Sending	2.3µs+5x12.2µs=63.3µs
Receiving	Receiving	Link Receiving	Link	2.5µs
		Receiving	Receiving	0.3µs
				4x2.3µs=9.2µs
	nd WF	R Node	WR S	witch Fibre/copper
Leger		Thous	WIX S	i ibi e/coppei

Determinism Clock Resilience Data Resilience Monitoring and Diagnostics

Cut-through HP Bypass

- All the broadcast traffic with priority 7 is cut-through forwarded using HP Bypass.
- Ideas concerning HP traffic collisions :
 - Single source of HP Traffic.
 - Priority of HP Traffic from Data Master (DM), drop non-DM on collision.

CM size	CM Delivery Delay		
	GSI	CERN	
200 bytes	63.2µs	103.2µs	
500 bytes	76.3µs	116.3µs	
1500 bytes	106.4µs	146.4 <i>µs</i>	
5000 bytes	175.8µs	215.8µs	



Determinism Clock Resilience Data Resilience Monitoring and Diagnostics

Synchronization Stability

What might cause synchronization instability?

- Changing conditions (e.g. temperature) solved by WRPTP.
- Failure of network elements solved by topology redundancy and WRPTP,
- ▶ Switch-over (change of clock source-port). Two dependencies:
 - Syntonization SyncE PLLs designed to accommodate many clock sources,
 - Synchronization specially modified BMC in WRPTP.

Determinism Clock Resilience Data Resilience Monitoring and Diagnostics

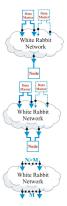
Probability of WRN failure

Requirement name	Value(s)		
	GSI	CERN	
max Failure rate ($\lambda_{WRN_{max}}$)	$3.170979198 * 10^{-12}$	$3.170979198 * 10^{-11}$	

$$P_{WRN_f} = P_{congestion} + P_{f_FEC} + P_{f_Network}$$

- ► *P*_{congestion} Control Message lost (dropped) due to congestion.
- *P_{f_FEC}* FEC fails to recover Control Message.
- *P_{f_Network}* single network component failure.

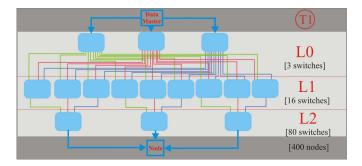
	WRS Number	Nodes MAX Number	<i>MTBF_{Switch}</i> = 20 000[h]	
Topology			Pf	MTBF[h]
No-redundant	127	2048	$2.08 * 10^{-3}$	$5.77 * 10^3$
Double-redundancy	292	2048	$4.71 * 10^{-7}$	$2.55 * 10^{7}$
Triple-redundancy	495	2048	$3.06 * 10^{-11}$	$4.08 * 10^{11}$



(1)

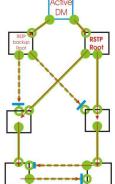
Determinism Clock Resilience Data Resilience Monitoring and Diagnostics

Topology Redundancy


- Increases Clock and Data resilience by eliminating single point of failure (only if redundant connection to WR Node is considered).
- Enables to achieve reliability of entire network greater then reliability of its single component.
- First estimations show that double redundancy is not enough to achieve reliability of 1 CM lost per year, TO BE confirmed with more studies.
- The redundancy of the WRN is justified only if Data Master is highly reliable or redundant.

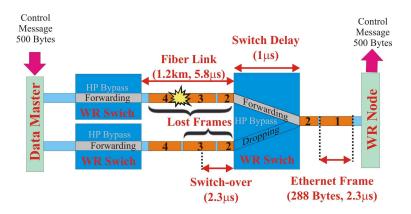
Determinism Clock Resilience Data Resilience Monitoring and Diagnostics

Triple-redundancy of topology

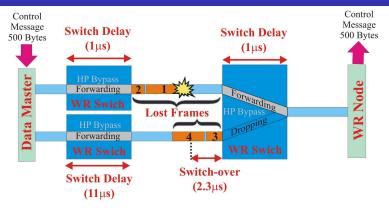

For ≈2000 WR nodes connected to two layers of switches, 15 switches in L0, 80 in L1 and 400 in L2 are required (total 495)

Determinism Clock Resilience Data Resilience Monitoring and Diagnostics

Rapid Spanning Tree Protocol in WR (WR RSTP)


- Requirements:
 - Fast switching to alternate/backup link so that not more then 2 HP Frames are lost, e.g.: CM of 500 Bytes, FECed into 4 Ethernet frames of 288 Bytes, each transmitted 2.3us – switching time < 2.3us
 - Alternate path length : max 1 hop longer than the primary path length.
- The speed of White Rabbit RSTP is directly associated with the minimum CM size.
- Hardware support for HP traffic (only) using RSTP and restricting possible topologies.
- Challenge: WR RSTP for all the Ethernet traffic

Determinism Clock Resilience Data Resilience Monitoring and Diagnostics

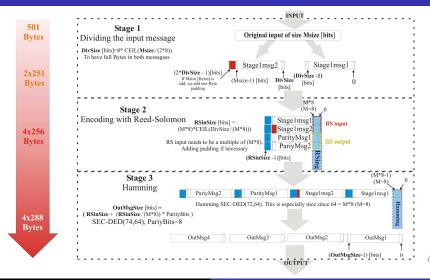

WR RSTP - theoretical consideration

Determinism Clock Resilience Data Resilience Monitoring and Diagnostics

WR RSTP - real-life consideration

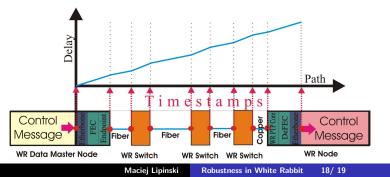
- Introducing maximum cut-through delay (13us) on backup ports of the switch.
- Backup link always 1 hoop longer then active.

Determinism Clock Resilience Data Resilience Monitoring and Diagnostics


Data Redundancy (FEC)

- ▶ Reed-Solomon for package-based encoding:
 4 Ethernet Frames (2 × original, 2 × parity) for input of size
 <≈ 2500. We can lose any 2 packages (out of 4).
- Hamming for bit-based encoding Single Error Detection-Double Error Correction (SEC-DED).

Determinism Clock Resilience Data Resilience Monitoring and Diagnostics


Flow and Congestion Control

Determinism Clock Resilience Data Resilience Monitoring and Diagnostics

Monitoring and Diagnostics of WR-specific parameters

- Detection of lost HP Frames (in WR Switches) using FEC ID and CM ID (stored in the header added by FEC).
- Precise knowledge of HP traffic delays on the path DataMaster < - > Node.
- Monitoring of WRPTP parameters.

Determinism Clock Resilience Data Resilience Monitoring and Diagnostics

Thank you

Thank you for your attention

Questions?

