Introduction	Applications	Enhancements o	Standardization o	Conclusions O

White Rabbit Applications and Enhancements

M. Lipiński, E. van der Bij, J. Serrano, T. Włostowski, G. Daniluk, A. Wujek, M. Rizzi, D. Lampridis

Hardware and Timing Section European Organization for Nuclear Research, CERN

5 October 2018

Outling				
Introduction	Applications	Enhancements	Standardization	Conclusions
	0000000000000000	o	o	o

Outline

Introduction

Applications

- Time and frequency transfer
- Time-based control
- Precise timestamping
- Trigger distribution
- Fixed-latency data transfer
- Radio-frequency transfer

Enhancements

Standardization

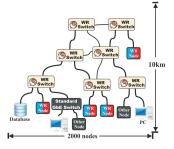
Introduction	Applications	Enhancements o	Standardization o	Conclusions o
Outline				

Applications

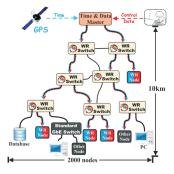
- Time and frequency transfer
- Time-based control
- Precise timestamping
- Trigger distribution
- Fixed-latency data transfer
- Radio-frequency transfer

3 Enhancements

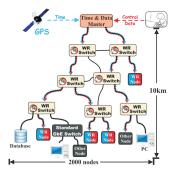
Standardization


Introduction	Applications	Enhancements	Standardization	Conclusions
●○○		o	o	o
White R	abhit			

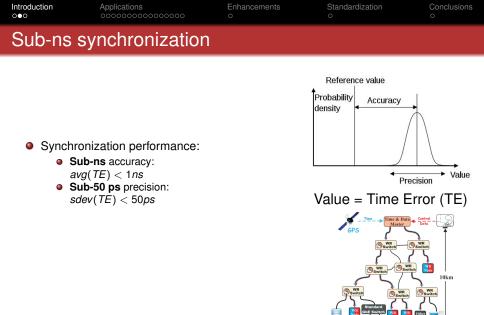
- Based on well-established standards
 - Bridged Local Area Network
 - Ethernet
 - Precision Time Protocol

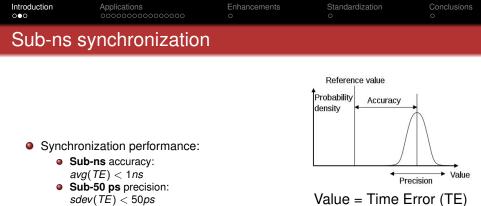

Introduction	Applications	Enhancements	Standardization	Conclusions
●○○		o	O	o
White B	abbit			

- Based on well-established standards
 - Bridged Local Area Network
 - Ethernet
 - Precision Time Protocol

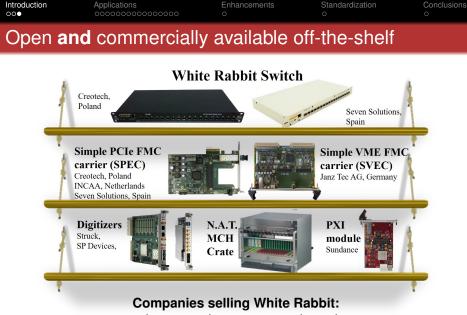

Introduction	Applications	Enhancements	Standardization	Conclusions
●○○		o	O	o
White B	abbit			

- Based on well-established standards
 - Bridged Local Area Network
 - Ethernet
 - Precision Time Protocol
- Extends standards to meet CERN requirements and provides
 - Sub-ns synchronizationDeterministic data transfer




Introduction	Applications	Enhancements	Standardization	Conclusions
●○○		o	o	o
White R	abbit			

- Based on well-established standards
 - Bridged Local Area Network
 - Ethernet
 - Precision Time Protocol
- Extends standards to meet CERN requirements and provides
 - Sub-ns synchronization
 Deterministic data transfer
- Non-exhaustive list of worldwide applications
 - 2018: 564 nodes and 106 switches
 - 2020: 17592 nodes and 1532 switches


www.ohwr.org/projects/white-rabbit/wiki/newsletter-2018-09

- Building blocks:
 - Precision Time Protocol (PTP, IEEE1588)
 - Layer 1 syntonization
 - Phase measurement
 - Link delay model to compensate asymmetries

www.ohwr.org/projects/white-rabbit/wiki/wrcompanies

Introduction	Applications	Enhancements o	Standardization o	Conclusions o
Outling				

Outline

Introduction

Applications

- Time and frequency transfer
- Time-based control
- Precise timestamping
- Trigger distribution
- Fixed-latency data transfer
- Radio-frequency transfer

3 Enhancements

4 Standardization

Introduction	Applications	Enhancements o	Standardization o	Conclusions o
Outline				

Introductior

2

Applications

Time and frequency transfer

- Time-based control
- Precise timestamping
- Trigger distribution
- Fixed-latency data transfer
- Radio-frequency transfer

B Enhancements

4 Standardization

Introduction	Applications	Enhancements	Standardization	Conclusions
	o●ooooooooooooooo	o	o	o
Time and	frequency tran	sfer		

• T&F transfer from Grandmaster to switches/nodes

Introduction	Applications	Enhancements	Standardization	Conclusions	
	oecocococococococo	o	O	o	
Time and	Time and frequency transfer				

- T&F transfer from Grandmaster to switches/nodes
- Not very useful on its own ...

Introduction	Applications	Enhancements	Standardization	Conclusions			
	o●oooooooooooooooo	o	o	o			
Time and	frequency trai	Time and frequency transfer					

- T&F transfer from Grandmaster to switches/nodes
- Not very useful on its own ...
- ...unless in a National Time Laboratory

Introduction	Applications	Enhancements	Standardization	Conclusions
	o●ooooooooooooooo	o	o	o

Time and frequency transfer

- T&F transfer from Grandmaster to switches/nodes
- Not very useful on its own ...
- ...unless in a National Time Laboratory
- National Time Laboratories using WR:

Time Lab	Country	Link Length	Time Error
VTT	Finland	950 km	±2ns
MIKES		50 km	<1ns
VSL	Netherlands	2x137 km	≈8ns
LNE-		25 km	150ps
SYRTE	France	125 km	2.5ns
		4x125 km	2.5ns
NIST	USA	<10 km	<200ps
NLP	UK	2x80 km	<1ns
		50 km	800ps ±56ps
INRIM	Italy	70 km	610ps ±47ps

Introduction	Applications	Enhancements	Standardization	Conclusions
	o●ooooooooooooooo	o	o	o

Time and frequency transfer

- T&F transfer from Grandmaster to switches/nodes
- Not very useful on its own ...
- ...unless in a National Time Laboratory
- National Time Laboratories using WR:

Time Lab	Country	Link Length	Time Error
VTT	Finland	950 km	±2ns
MIKES		50 km	<1ns
VSL	Netherlands	2x137 km	≈8ns
LNE-		25 km	150ps
SYRTE	France	125 km	2.5ns
		4x125 km	2.5ns
NIST	USA	<10 km	<200ps
NLP	UK	2x80 km	<1ns
		50 km	800ps ±56ps
INRIM	Italy	70 km	610ps ±47ps

WR used operationally by MIKES, NLP & INRIM

Introduction	Applications	Enhancements	Standardization	Conclusions
	o●oooooooooooooooo	o	O	o

Time and frequency transfer

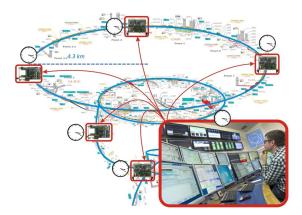
- T&F transfer from Grandmaster to switches/nodes
- Not very useful on its own ...
- ...unless in a National Time Laboratory
- National Time Laboratories using WR:

Time Lab	Country	Link Length	Time Error
VTT	Finland	950 km	±2ns
MIKES		50 km	<1ns
VSL	Netherlands	2x137 km	≈8ns
LNE-		25 km	150ps
SYRTE	France	125 km	2.5ns
		4x125 km	2.5ns
NIST	USA	<10 km	<200ps
NLP	UK	2x80 km	<1ns
		50 km	800ps ±56ps
INRIM	Italy	70 km	610ps ±47ps

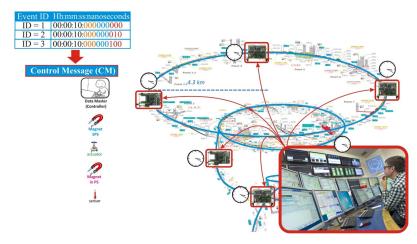
- WR used operationally by MIKES, NLP & INRIM
- INRIM, NLP, LNE-SYRTE, MIKES, VSL work within EU-funded "White Rabbit Industrial Timing Enhancement" (WRITE) project

Introduction	Applications	Enhancements	Standardization	Conclusions
	○○●○○○○○○○○○○○○	o	o	o
Outline				

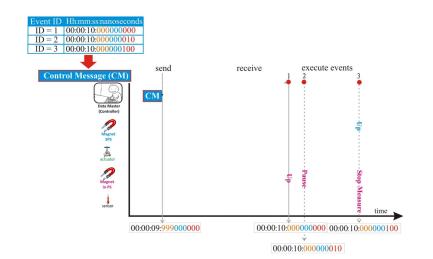
Introduction

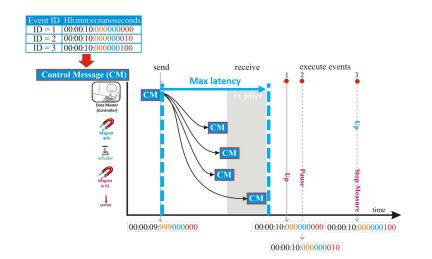

Applications

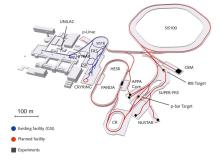
- Time and frequency transfer
- Time-based control
- Precise timestamping
- Trigger distribution
- Fixed-latency data transfer
- Radio-frequency transfer

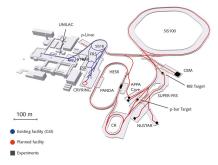

3 Enhancements

4 Standardization

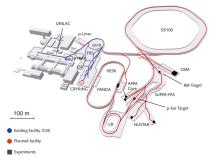

Introduction	Applications	Enhancements o	Standardization O	Conclusions o
Time-h:	ased control			






Time-based control - example application

 GSI Helmholtz Centre for Heavy Ion Research in Germany


Time-based control - example application

- GSI Helmholtz Centre for Heavy Ion Research in Germany
- 1-5 ns accuracy and 10 ps precision

Time-based control - example application

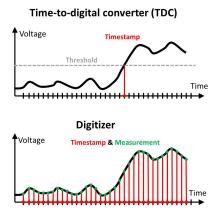
- GSI Helmholtz Centre for Heavy Ion Research in Germany
- 1-5 ns accuracy and 10 ps precision
- WR network at GSI:
 - Current: 134 nodes and 32 switches (operational since June 2018)
 - Final: 2000 WR nodes and 300 switches in 5 layers

Introduction	Applications	Enhancements	Standardization	Conclusions
	○○○○●●	o	o	o
Outline				

Introduction

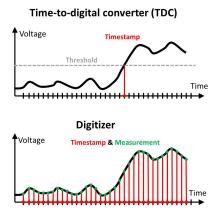
Applications

- Time and frequency transfer
- Time-based control
- Precise timestamping
- Trigger distribution
- Fixed-latency data transfer
- Radio-frequency transfer


3 Enhancements

4 Standardization

Precise	timestamping			
Introduction	Applications	Enhancements	Standardization o	Conclusions o


Association of time with

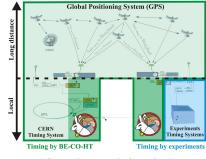
- an event
- a sample (measured value)

Introduction	Applications	Enhancements	Standardization	Conclusions
	○○○○○○●○○○○○○○○	o	o	o
Precise	timestamping			

- Association of time with
 - an event
 - a sample (measured value)
- The most widely used WR application

Introduction	Applications	Enhancements	Standardization	Conclusions
	○○○○○●○○○○○○○	o	o	O
Precise	timestamping			

Association of time with

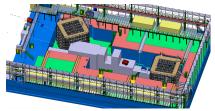

- an event
- a sample (measured value)

• The most widely used WR application

• Time-of-flight measurement

Association of time with

- an event
- a sample (measured value)
- The most widely used WR application
 - Time-of-flight measurement
 - Speed of neutrinos CNGS


10 nodes and 4 switches

Association of time with

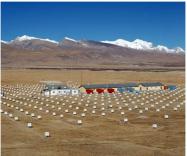
- an event
- a sample (measured value)

• The most widely used WR application

- Time-of-flight measurement
 - Speed of neutrinos CNGS
 - Types of particles ProtoDUNE

CERN, later Fermi Lab in USA 2018: 14 nodes and 5 switches **2020:** 36 nodes and 5 switches

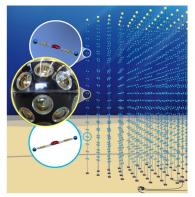
Association of time with


- an event
- a sample (measured value)

The most widely used WR application

- Time-of-flight measurement
 - Speed of neutrinos CNGS
 - Types of particles ProtoDUNE
- Cosmic ray and neutrino detection

Association of time with


- an event
- a sample (measured value)
- The most widely used WR application
 - Time-of-flight measurement
 - Speed of neutrinos CNGS
 - Types of particles ProtoDUNE
 - Cosmic ray and neutrino detection
 - Large High Altitude Air Shower Observatory

China, 4410 m above sea level 2018: 40 nodes and 4 switches 2020: 6734 nodes and 564 switches

Association of time with

- an event
- a sample (measured value)
- The most widely used WR application
 - Time-of-flight measurement
 - Speed of neutrinos CNGS
 - Types of particles ProtoDUNE
 - Cosmic ray and neutrino detection
 - Large High Altitude Air Shower Observatory
 - Cubic Kilometre Neutrino Telescope

Mediterranean Sea, ~3000m depth 2018: 36 nodes and 2 switches 2020: 6140 nodes and 400 switches

Association of time with

- an event
- a sample (measured value)

The most widely used WR application

- Time-of-flight measurement
 - Speed of neutrinos CNGS
 - Types of particles ProtoDUNE
- Cosmic ray and neutrino detection
 - Large High Altitude Air Shower Observatory
 - Cubic Kilometre Neutrino Telescope
 - Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy

Siberia, Russia 2018: 20 nodes and 4 switches 2020: 1100 nodes and 90 switches

Precise timestamping

Association of time with

- an event
- a sample (measured value)
- The most widely used WR application
 - Time-of-flight measurement
 - Speed of neutrinos CNGS
 - Types of particles ProtoDUNE
 - Cosmic ray and neutrino detection
 - Large High Altitude Air Shower Observatory
 - Cubic Kilometre Neutrino Telescope
 - Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy
 - German Stock Exchange

Frankfurt, Germany 2018: 7+ nodes and 4 switches

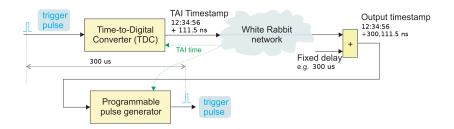
Introduction	Applications	Enhancements o	Standardization o	Conclusions o
Outline				

Introduction

2

Applications

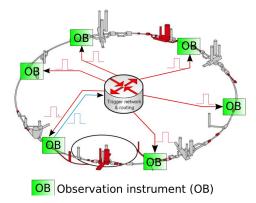
- Time and frequency transfer
- Time-based control
- Precise timestamping


Trigger distribution

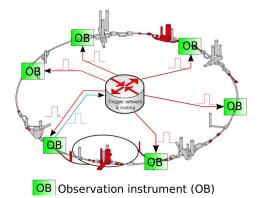
- Fixed-latency data transfer
- Radio-frequency transfer

B) Enhancements

4 Standardization


Introduction	Applications	Enhancements	Standardization	Conclusions
	○○○○○○○●○○○○○○	o	o	o
Trigger o	distribution			

Trigger distribution - example applications


LHC trigger distribution to measure beam instabilities - since 2016

Trigger distribution - example applications

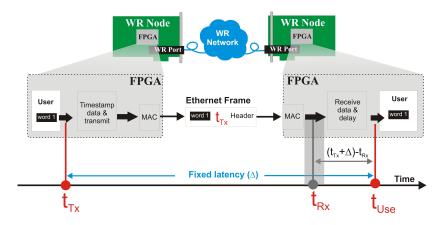
LHC trigger distribution to measure beam instabilities - since 2016

WRXI - White Rabbit eXtensions for Instrumentation - to replace CERN's Open Analog Signals Information System (OASIS)

Introduction	Applications	Enhancements o	Standardization o	Conclusions o
Outling				

Outline

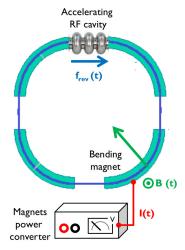
Introduction


Applications

- Time and frequency transfer
- Time-based control
- Precise timestamping
- Trigger distribution
- Fixed-latency data transfer
- Radio-frequency transfer

3 Enhancements

4 Standardization



Fixed-latency data transfer- example application

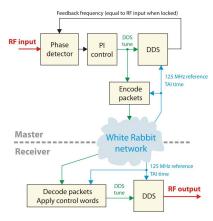
Distribution of magnetic field in CERN accelerators

Introduction	Applications	Enhancements O	Standardization O	Conclusions o

Outline

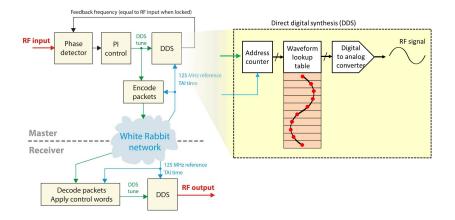
Introduction

Applications

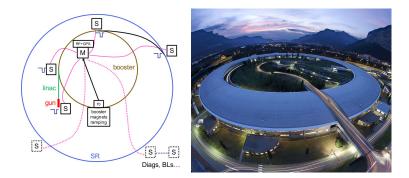

- Time and frequency transfer
- Time-based control
- Precise timestamping
- Trigger distribution
- Fixed-latency data transfer
- Radio-frequency transfer

3 Enhancements

4 Standardization

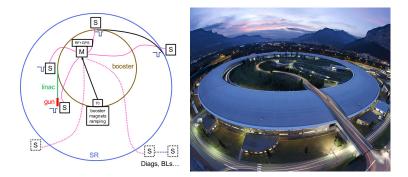

Introduction	Applications	Enhancements o	Standardization O	Conclusions o

Radio-frequency transfer



Radio-frequency transfer

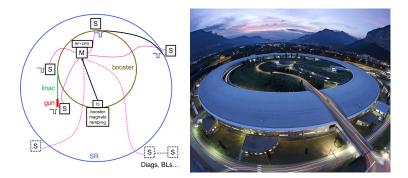
Introduction Applications Enhancements Standardization Conclusions


Radio-frequency transfer - example application

RF over WR at European Synchrotron Radiation Facility (ESRF)

Introduction Applications Enhancements Standardization Conclusions

Radio-frequency transfer - example application

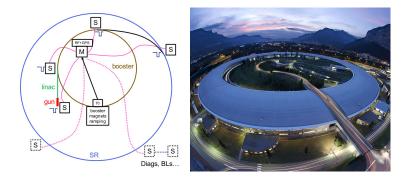


RF over WR at European Synchrotron Radiation Facility (ESRF)

• A prototype system provided <10 ps jitter

Introduction Applications Enhancements Standardization Conclusions

Radio-frequency transfer - example application



RF over WR at European Synchrotron Radiation Facility (ESRF)

- A prototype system provided <10 ps jitter
- Currently operational with 1 WR switch and 8 WR nodes

Introduction Applications Enhancements Standardization Conclusions of o

Radio-frequency transfer - example application

RF over WR at European Synchrotron Radiation Facility (ESRF)

- A prototype system provided <10 ps jitter
- Currently operational with 1 WR switch and 8 WR nodes
- In 2020: 5 WR switches and 41 WR nodes

Introduction	Applications	Enhancements o	Standardization o	Conclusions o
Outline				

Introduction

2 Applications

- Time and frequency transfer
- Time-based control
- Precise timestamping
- Trigger distribution
- Fixed-latency data transfer
- Radio-frequency transfer

3 Enhancements

Standardization

Introduction	Applications	Enhancements ●	Standardization o	Conclusions o		
Performance Enhancements						

- Jitter and clock stability
 - Triggered by National Laboratories and RF distribution
 - Allan deviation (ADEV) from 1e-11 to 1e-12 over 1s
 - Random jitter from 11 to 1.1ps RMS (1 Hz to 100kHz)
 - Ongong work to achieve jitter of sub-100fs RMS (100Hz to 20MHz)

Introduction	Applications	Enhancements	Standardization o	Conclusions o			
Perform	Performance Enhancements						

- Jitter and clock stability
 - Triggered by National Laboratories and RF distribution
 - Allan deviation (ADEV) from 1e-11 to 1e-12 over 1s
 - Random jitter from 11 to 1.1ps RMS (1 Hz to 100kHz)
 - Ongong work to achieve jitter of sub-100fs RMS (100Hz to 20MHz)
- Compensation of hardware temperature variation
 - Triggered by cosmic ray detectors
 - Active correction of hardware temperature variation
 - Pk-pk variation from 700 ps to <150 ps with sdev <50ps (-10 to 50°C)</p>

Introduction	Applications	Enhancements •	Standardization o	Conclusions o			
Perform	Performance Enhancements						

- Jitter and clock stability
 - Triggered by National Laboratories and RF distribution
 - Allan deviation (ADEV) from 1e-11 to 1e-12 over 1s
 - Random jitter from 11 to 1.1ps RMS (1 Hz to 100kHz)
 - Ongong work to achieve jitter of sub-100fs RMS (100Hz to 20MHz)
- Compensation of hardware temperature variation
 - Triggered by cosmic ray detectors
 - Active correction of hardware temperature variation
 - Pk-pk variation from 700 ps to <150 ps with sdev <50ps (-10 to 50°C)</p>
- Long-haul link
 - Triggered by National Time Labs and Radio Telescope
 - Sub-ns is achievable on links on up to 80km
 - Ns on 137km bidirectional & ±2.5ns on 950km unidirectional links

Introduction	Applications	Enhancements ●	Standardization o	Conclusions o		
Performance Enhancements						

- Jitter and clock stability
 - Triggered by National Laboratories and RF distribution
 - Allan deviation (ADEV) from 1e-11 to 1e-12 over 1s
 - Random jitter from 11 to 1.1ps RMS (1 Hz to 100kHz)
 - Ongong work to achieve jitter of sub-100fs RMS (100Hz to 20MHz)
- Compensation of hardware temperature variation
 - Triggered by cosmic ray detectors
 - Active correction of hardware temperature variation
 - Pk-pk variation from 700 ps to <150 ps with sdev <50ps (-10 to 50°C)</p>
- Long-haul link
 - Triggered by National Time Labs and Radio Telescope
 - Sub-ns is achievable on links on up to 80km
 - Ns on 137km bidirectional & ±2.5ns on 950km unidirectional links
- Link asymmetry correction
 - Triggered by radio telescope (Square Kilometre Array)
 - At 1310/1490nm, temp variation -0.12 ps/km/K (3ns for 80km over 50°C)
 - Sub-ns for 80km over 50°C using DWDM SFP on ITU channels C21/C22 (1560.61/1558.98 nm)

Introduction	Applications	Enhancements •	Standardization O	Conclusions o		
Performance Enhancements						

- Jitter and clock stability
 - Triggered by National Laboratories and RF distribution
 - Allan deviation (ADEV) from 1e-11 to 1e-12 over 1s
 - Random jitter from 11 to 1.1ps RMS (1 Hz to 100kHz)
 - Ongong work to achieve jitter of sub-100fs RMS (100Hz to 20MHz)
- Compensation of hardware temperature variation
 - Triggered by cosmic ray detectors
 - Active correction of hardware temperature variation
 - Pk-pk variation from 700 ps to <150 ps with sdev <50ps (-10 to 50°C)</p>
- Long-haul link
 - Triggered by National Time Labs and Radio Telescope
 - Sub-ns is achievable on links on up to 80km
 - Ns on 137km bidirectional & ±2.5ns on 950km unidirectional links
- Link asymmetry correction
 - Triggered by radio telescope (Square Kilometre Array)
 - At 1310/1490nm, temp variation -0.12 ps/km/K (3ns for 80km over 50°C)
 - Sub-ns for 80km over 50°C using DWDM SFP on ITU channels C21/C22 (1560.61/1558.98 nm)
- Absolute calibration next presentation

Introduction	Applications	Enhancements o	Standardization	Conclusions o
Outline				

Introduction

2 Applications

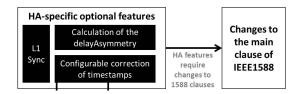
- Time and frequency transfer
- Time-based control
- Precise timestamping
- Trigger distribution
- Fixed-latency data transfer
- Radio-frequency transfer

3 Enhancements

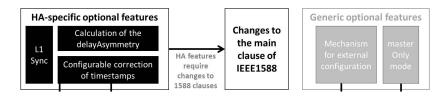
4 Standardization

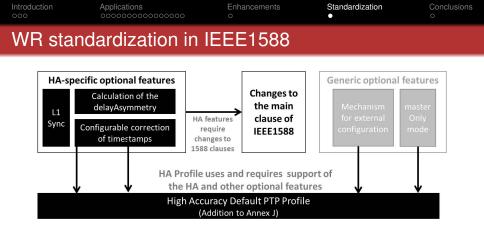
Syn	Standard for a Precision Clock chronization Protocol for
	vorked Measurement and Contro tems
IEEEI	nstrumentation and Measurement Society
Sponsor Technica	ed by the Committee on Sensor Technology (TC-9)

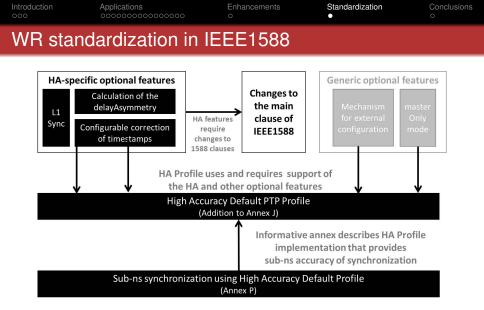
White Rabbit integration into IEEE1588-20XX as High Accuracy: https://www.ohwr.org/projects/wr-std/wiki/wrin1588


Instanti we Imbellia POUTECHNO WARDANDREL Devrivated enMarch 082012 al 204822 EET hen IEEE Xalam. N

Introduction	Applications	Enhancements o	Standardization ●	Conclusions o
WR sta	ndardization in	IEEE1588		


Changes to the main clause of IEEE1588


White Rabbit integration into IEEE1588-20XX as High Accuracy:



Introduction	Applications	Enhancements o	Standardization o	Conclusions o
Outline				

Introduction

2 Applications

- Time and frequency transfer
- Time-based control
- Precise timestamping
- Trigger distribution
- Fixed-latency data transfer
- Radio-frequency transfer

3 Enhancements

Standardization

Introduction	Applications	Enhancements o	Standardization o	Conclusions •
Conclusi	ons			

• A standard-based, open and commercially available

Introduction	Applications	Enhancements o	Standardization O	Conclusions •
Conclusio	ons			

- A standard-based, open and commercially available
- Proliferation of scientific applications

Introduction	Applications	Enhancements o	Standardization o	Conclusions •
Conclus	sions			

- A standard-based, open and commercially available
- Proliferation of scientific applications
- Emergence of industrial applications catalyzed by EU-funded projects

Introduction	Applications	Enhancements o	Standardization O	Conclusions •
Conclus	sions			

- A standard-based, open and commercially available
- Proliferation of scientific applications
- Emergence of industrial applications catalyzed by EU-funded projects
- Standardization in IEEE1588 (PTP)

Introduction	Applications	Enhancements o	Standardization o	Conclusions •
Conclus	sions			

- A standard-based, open and commercially available
- Proliferation of scientific applications
- Emergence of industrial applications catalyzed by EU-funded projects
- Standardization in IEEE1588 (PTP)
- Keeps getting better

Thank you

Thank you !

www.cern.ch/white-rabbit