Introduction 000000 Sub-ns synchronization

Deterministic & low-latency transmision

Summary

White Rabbit Overview

Maciej Lipiński

Hardware and Timing Section European Organization for Nuclear Research, CERN

24 November 2017

Introduction ●00000 Sub-ns synchronization

Deterministic & low-latency transmision

Summary 0000

CERN accelerator complex

Introduction 00000 Sub-ns synchronization

Deterministic & low-latency transmision

Summary

Time-triggered distributed system

 Each accelerator consist of hundreds of subsystems

Deterministic & low-latency transmision

Summary

Time-triggered distributed system

- Each accelerator consist of hundreds of subsystems
- Each subsystem performs time-triggered actions

Deterministic & low-latency transmision

Summary

Time-triggered distributed system

- Each accelerator consist of hundreds of subsystems
- Each subsystem performs time-triggered actions
- All actions are orchestrated by the General Machine Timing:
 - UTC time
 - Actions for next milisecond

ADC, DAC, TDC, Fine Delay Generator, ...

Deterministic & low-latency transmision

Summary

Time-triggered distributed system

- Each accelerator consist of hundreds of subsystems
- Each subsystem performs time-triggered actions
- All actions are orchestrated by the General Machine Timing:
 - UTC time
 - Actions for next milisecond
- Accelerator control is based on:
 - Accurate device synchronization
 - Deterministic data transmission

ADC, DAC, TDC, Fine Delay Generator, ...

Introduction 000000 Sub-ns synchronization

Deterministic & low-latency transmision

Summary

General Machine Timing renovation – White Rabbit

Decision to renovate in 2008

Introduction 000000 Sub-ns synchronization

Deterministic & low-latency transmision

Summary

- Decision to renovate in 2008
- Stringent requirements

Requirement	Value(s)
Network size:	10km & 2000
Accuracy	sub-ns
Message size	1.2–5 kB
Msgs lost per year	1
Network max latency	1ms
Switch max latency	10µs

Deterministic & low-latency transmision

- Decision to renovate in 2008
- Stringent requirements
- Name & logo

Requirement	Value(s)
Network size:	10km & 2000
Accuracy	sub-ns
Message size	1.2–5 kB
Msgs lost per year	1
Network max latency	1ms
Switch max latency	10µs

Deterministic & low-latency transmision

- Decision to renovate in 2008
- Stringent requirements
- Name & logo
- Open & based on standards:
 - Bridged Local Area Network
 - 1 Gbit Ethernet
 - Precision Time Protocol

Requirement	Value(s)
Network size:	10km & 2000
Accuracy	sub-ns
Message size	1.2–5 kB
Msgs lost per year	1
Network max latency	1ms
Switch max latency	10µs

Deterministic & low-latency transmision

- Decision to renovate in 2008
- Stringent requirements
- Name & logo
- Open & based on standards:
 - Bridged Local Area Network
 - 1 Gbit Ethernet
 - Precision Time Protocol

Requirement	Value(s)
Network size:	10km & 2000
Accuracy	sub-ns
Message size	1.2–5 kB
Msgs lost per year	1
Network max latency	1ms
Switch max latency	10µs

Deterministic & low-latency transmision

- Decision to renovate in 2008
- Stringent requirements
- Name & logo
- Open & based on standards:
 - Bridged Local Area Network
 - 1 Gbit Ethernet
 - Precision Time Protocol
- Extends standards to meet CERN requirements with two services:

Requirement	Value(s)
Network size:	10km & 2000
Accuracy	sub-ns
Message size	1.2–5 kB
Msgs lost per year	1
Network max latency	1ms
Switch max latency	10µs

Deterministic & low-latency transmision

- Decision to renovate in 2008
- Stringent requirements
- Name & logo
- Open & based on standards:
 - Bridged Local Area Network
 - 1 Gbit Ethernet
 - Precision Time Protocol
- Extends standards to meet CERN requirements with two services:
 - Sub-ns synchronization

Requirement	Value(s)
Network size:	10km & 2000
Accuracy	sub-ns
Message size	1.2–5 kB
Msgs lost per year	1
Network max latency	1ms
Switch max latency	10µs

Deterministic & low-latency transmision

- Decision to renovate in 2008
- Stringent requirements
- Name & logo
- Open & based on standards:
 - Bridged Local Area Network
 - 1 Gbit Ethernet
 - Precision Time Protocol
- Extends standards to meet CERN requirements with two services:
 - Sub-ns synchronization
 - Deterministic and low-latency data transmission

Requirement	Value(s)
Network size:	10km & 2000
Accuracy	sub-ns
Message size	1.2–5 kB
Msgs lost per year	1
Network max latency	1ms
Switch max latency	10µs

Deterministic & low-latency transmision

General Machine Timing renovation – White Rabbit

- Decision to renovate in 2008
- Stringent requirements
- Name & logo
- Open & based on standards:
 - Bridged Local Area Network
 - 1 Gbit Ethernet
 - Precision Time Protocol
- Extends standards to meet CERN requirements with two services:
 - Sub-ns synchronization
 - Deterministic and low-latency data transmission
- Foreseen for non-radiation areas (in radiation: WorldFIP – now, Powerlink – in future)

Requirement	Value(s)
Network size:	10km & 2000
Accuracy	sub-ns
Message size	1.2–5 kB
Msgs lost per year	1
Network max latency	1ms
Switch max latency	10µs

4/41

Introduction 000000 Sub-ns synchronization

Deterministic & low-latency transmision

Summary 0000

White Rabbit applications

- Particle accelerators
 - CERN
 - GSI (Germany)
 - JINR Dubna (Russia)

European Organization for Nuclear Research, CERN

All users: www.ohwr.org/projects/white-rabbit/wiki/WRUsers

Deterministic & low-latency transmision

Summary 0000

White Rabbit applications

- Particle accelerators
 - CERN
 - GSI (Germany)
 - JINR Dubna (Russia)
- Cosmic ray & neutrinos detectors
 - LHAASO (China)
 - HiSCORE (Siberia)
 - KM3NET (at the bed of Mediterranean)

The Large High Altitude Air Shower Observation

All users: www.ohwr.org/projects/white-rabbit/wiki/WRUsers

Deterministic & low-latency transmision

Summary

White Rabbit applications

- Particle accelerators
 - CERN
 - GSI (Germany)
 - JINR Dubna (Russia)

Cosmic ray & neutrinos detectors

- LHAASO (China)
- HiSCORE (Siberia)
- KM3NET (at the bed of Mediterranean)

National Metrology Institutes

- MIKES (Finland)
- VSL (Netherlands)
- LNE-SYRTE (France)

Finish National Metrology Institute

All users: www.ohwr.org/projects/white-rabbit/wiki/WRUsers

Deterministic & low-latency transmision

Open and commercially available off-the-shelf

www.ohwr.org/projects/white-rabbit/wiki/wrcompanies

Outline

Sub-ns synchronization

- Precision Time Protocol (PTP, IEEE1588)
- Layer 1 Syntonization
- Digital Dual Mixer Time Difference (DDMTD)
- Link delay model
- Performance
- Standardization

Deterministic & low-latency transmision

- Network Latency Contributors
- Latency in WR Switch
- Advanced/Optional Concepts
- Performance

Summary

- Using synchronization and determinism
- Summary, status and plans

Outline

Introduction

Sub-ns synchronization

- Precision Time Protocol (PTP, IEEE1588)
- Layer 1 Syntonization
- Digital Dual Mixer Time Difference (DDMTD)
- Link delay model
- Performance
- Standardization
- 3 Deterministic & low-latency transmision
 - Network Latency Contributors
 - Latency in WR Switch
 - Advanced/Optional Concepts
 - Performance
- 4

Summary

- Using synchronization and determinism
- Summary, status and plans

Deterministic & low-latency transmision

Summary 0000

Sub-ns synchronization

- Synchronization performance:
 - Sub-ns accuracy: max(|TE|) < 1 ns
 - Sub-50 ps precision: sdev(TE) < 50ps

Deterministic & low-latency transmision

Summary 0000

Sub-ns synchronization

- Synchronization performance:
 - Sub-ns accuracy: max(|TE|) < 1 ns
 - Sub-50 ps precision: sdev(TE) < 50ps
- Building blocks:
 - Precision Time Protocol (PTP, IEEE1588)
 - Layer 1 syntonization
 - Digital Dual Mixer Time Difference
 - Link delay model

Outline

Introduction

Sub-ns synchronization

Precision Time Protocol (PTP, IEEE1588)

- Layer 1 Syntonization
- Digital Dual Mixer Time Difference (DDMTD)
- Link delay model
- Performance
- Standardization

Deterministic & low-latency transmision

- Network Latency Contributors
- Latency in WR Switch
- Advanced/Optional Concepts
- Performance
- 4) S

Summary

- Using synchronization and determinism
- Summary, status and plans

Deterministic & low-latency transmision

Summary

Precision Time Protocol (PTP, IEEE1588)

Packet-based synchronization protocol

Deterministic & low-latency transmision

Summary 0000

Precision Time Protocol (PTP, IEEE1588)

Packet-based synchronization protocolSimple calculations:

• Link *delay_{ms}*
$$\delta_{ms} = \frac{(t_4 - t_1) - (t_3 - t_2)}{2}$$

• Clock offset_{ms} =
$$t_2 - t_1 + \delta_{ms}$$

Deterministic & low-latency transmision

Summary 0000

Precision Time Protocol (PTP, IEEE1588)

- Packet-based synchronization protocolSimple calculations:
 - Link *delay_{ms}* $\delta_{ms} = \frac{(t_4 t_1) (t_3 t_2)}{2}$
 - Clock offset_{ms} = $t_2 t_1 + \delta_{ms}$
- Sub-µs synchronisation

Deterministic & low-latency transmision

Summary 0000

Precision Time Protocol (PTP, IEEE1588)

- Packet-based synchronization protocolSimple calculations:
 - Link *delay_{ms}* $\delta_{ms} = \frac{(t_4 t_1) (t_3 t_2)}{2}$
 - Clock offset_{ms} = $t_2 t_1 + \delta_{ms}$
- Sub-µs synchronisation
- Limitations:
 - Free-running oscillators
 - Timestamping precision
 - Medium asymmetry

Outline

Introduction

Sub-ns synchronization

Precision Time Protocol (PTP, IEEE1588)

Layer 1 Syntonization

- Digital Dual Mixer Time Difference (DDMTD)
- Link delay model
- Performance
- Standardization

Deterministic & low-latency transmision

- Network Latency Contributors
- Latency in WR Switch
- Advanced/Optional Concepts
- Performance
- 4

Summary

- Using synchronization and determinism
- Summary, status and plans

Introduction 000000 Sub-ns synchronization

Deterministic & low-latency transmision

Summary 0000

Layer 1 Syntonization

- All network devices use the same physical layer clock
- Clock is encoded in data by master and recovered by slave
- Clock loopback and phase detection allow precise timestamps

Outline

Introduction

Sub-ns synchronization

- Precision Time Protocol (PTP, IEEE1588)
- Layer 1 Syntonization
- Digital Dual Mixer Time Difference (DDMTD)
- Link delay model
- Performance
- Standardization

B Deterministic & low-latency transmision

- Network Latency Contributors
- Latency in WR Switch
- Advanced/Optional Concepts
- Performance
- 4) S

Summary

- Using synchronization and determinism
- Summary, status and plans

Digital Dual Mixer Time Difference (DDMTD)

- Clever implementation of a phase detector in an FPGA
- Uses D-flip-flops to zoom-in phase offset
- Allows for phase measurements at picosecond level

www.cern.ch/white-rabbit/documents/DDMTD_for_Sub-ns_Synchronization.pdf

Outline

Introduction

Sub-ns synchronization

- Precision Time Protocol (PTP, IEEE1588)
- Layer 1 Syntonization
- Digital Dual Mixer Time Difference (DDMTD)

Link delay model

- Performance
- Standardization

Deterministic & low-latency transmision

- Network Latency Contributors
- Latency in WR Switch
- Advanced/Optional Concepts
- Performance
- 4

Summary

- Using synchronization and determinism
- Summary, status and plans

Introduction

Sub-ns synchronization

Deterministic & low-latency transmision

Summary

Link delay model

Hardware delays:

Link asymmetry:

www.cern.ch/white-rabbit/documents/WR_Calibration-v1.1-20151109.pdf

Link delay model

- Hardware delays:
 - Calibrate static delays: Δ_{TXM} , Δ_{RXM} , Δ_{TXS} , Δ_{RXS}
 - Measure semi-static delays: ϵ_M , ϵ_S
- Link asymmetry:

www.cern.ch/white-rabbit/documents/WR_Calibration-v1.1-20151109.pdf

Link delay model

- Hardware delays:
 - Calibrate static delays: Δ_{TXM} , Δ_{RXM} , Δ_{TXS} , Δ_{RXS}
 - Measure semi-static delays: *ϵ_M*, *ϵ_S*
- Link asymmetry:
 - Single fibre for two-way communication
 - Fibre asymmetry coefficient: $\alpha = \frac{\delta_{MS} \delta_{SM}}{\delta_{SM}}$

www.cern.ch/white-rabbit/documents/WR_Calibration-v1.1-20151109.pdf
Outline

Introduction

Sub-ns synchronization

- Precision Time Protocol (PTP, IEEE1588)
- Layer 1 Syntonization
- Digital Dual Mixer Time Difference (DDMTD)
- Link delay model

Performance

Standardization

3 Deterministic & low-latency transmision

- Network Latency Contributors
- Latency in WR Switch
- Advanced/Optional Concepts
- Performance

Summary

- Using synchronization and determinism
- Summary, status and plans

Sub-ns synchronization

Deterministic & low-latency transmision

Summary 0000

WR Synchronization performance

www.cern.ch/white-rabbit/documents/White_Rabbit-a_PTP_application_for_ robust_sub-nanosecond_synchronization.pdf

Sub-ns synchronization

Deterministic & low-latency transmision

Summary

WR Synchronization performance

www.cern.ch/white-rabbit/documents/White_Rabbit-a_PTP_application_for_ robust_sub-nanosecond_synchronization.pdf

Outline

Introduction

Sub-ns synchronization

- Precision Time Protocol (PTP, IEEE1588)
- Layer 1 Syntonization
- Digital Dual Mixer Time Difference (DDMTD)
- Link delay model
- Performance
- Standardization
- 3

Deterministic & low-latency transmision

- Network Latency Contributors
- Latency in WR Switch
- Advanced/Optional Concepts
- Performance
- 4

Summary

- Using synchronization and determinism
- Summary, status and plans

Sub-ns synchronization

Deterministic & low-latency transmision

Summary

WR standardization in IEEE1588

IEEE standards are revised periodically

M. Lipiński White Rabbit Overview 21/41

Deterministic & low-latency transmision

Summary

- IEEE standards are revised periodically
- The IEEE1588 is revised by industry/academia

Deterministic & low-latency transmision

Summary

- IEEE standards are revised periodically
- The IEEE1588 is revised by industry/academia
- Revision performed in 5 sub-committees (https://ieee-sa.imeetcentral.com/1588public/)

Deterministic & low-latency transmision

Summary

- IEEE standards are revised periodically
- The IEEE1588 is revised by industry/academia
- Revision performed in 5 sub-committees (https://ieee-sa.imeetcentral.com/1588public/)
- High Accuracy sub-committee dedicated to WR

Deterministic & low-latency transmision

Summary

- IEEE standards are revised periodically
- The IEEE1588 is revised by industry/academia
- Revision performed in 5 sub-committees (https://ieee-sa.imeetcentral.com/1588public/)
- High Accuracy sub-committee dedicated to WR

Deterministic & low-latency transmision

Summary

- IEEE standards are revised periodically
- The IEEE1588 is revised by industry/academia
- Revision performed in 5 sub-committees (https://ieee-sa.imeetcentral.com/1588public/)
- High Accuracy sub-committee dedicated to WR
 - Generalization of WR methods
 - Inclusion of the generalizations

Deterministic & low-latency transmision

Summary

- IEEE standards are revised periodically
- The IEEE1588 is revised by industry/academia
- Revision performed in 5 sub-committees (https://ieee-sa.imeetcentral.com/1588public/)
- High Accuracy sub-committee dedicated to WR
 - Generalization of WR methods
 - Inclusion of the generalizations
- Revised IEEE1588 expected in 2018/2019

Outline

Introduction

Sub-ns synchronization

- Precision Time Protocol (PTP, IEEE1588)
- Layer 1 Syntonization
- Digital Dual Mixer Time Difference (DDMTD)
- Link delay model
- Performance
- Standardization

Deterministic & low-latency transmision

- Network Latency Contributors
- Latency in WR Switch
- Advanced/Optional Concepts
- Performance

Sumn

- Using synchronization and determinism
- Summary, status and plans

Deterministic & low-latency transmision

Summary 0000

Determinism and network latency

Determinism

A deterministic system is predictable: it provides calculable and consistent characteristics of operation that are required by the application, e.g. network latency of data transmission.

Determinism and network latency

Determinism

A deterministic system is predictable: it provides calculable and consistent characteristics of operation that are required by the application, e.g. network latency of data transmission.

Network latency

Determinism and network latency

Determinism

A deterministic system is predictable: it provides calculable and consistent characteristics of operation that are required by the application, e.g. network latency of data transmission.

Network latency

Deterministic network is a network in which we can calculate the maximum latency

Outline

Introduction

Sub-ns synchronization

- Precision Time Protocol (PTP, IEEE1588)
- Layer 1 Syntonization
- Digital Dual Mixer Time Difference (DDMTD)
- Link delay model
- Performance
- Standardization

Deterministic & low-latency transmision

Network Latency Contributors

- Latency in WR Switch
- Advanced/Optional Concepts
- Performance

Sum

- Using synchronization and determinism
- Summary, status and plans

Sub-ns synchronization

Deterministic & low-latency transmision

Summary 0000

Network latency contributors

M. Lipiński White Rabbit Overview 25/41

Sub-ns synchronization

Deterministic & low-latency transmision

Summary 0000

Network latency contributors

Sub-ns synchronization

Deterministic & low-latency transmision

Summary

Network latency contributors

- Cables: 5us/km we cannot do much about this
- Switch operation We can do something about this
- Other traffic

Outline

Introduction

Sub-ns synchronization

- Precision Time Protocol (PTP, IEEE1588)
- Layer 1 Syntonization
- Digital Dual Mixer Time Difference (DDMTD)
- Link delay model
- Performance
- Standardization

Deterministic & low-latency transmision

- Network Latency Contributors
- Latency in WR Switch
- Advanced/Optional Concepts
- Performance

Sum

- Using synchronization and determinism
- Summary, status and plans

Sub-ns synchronization

Deterministic & low-latency transmision

Summary 0000

Switch in a nutshell

Sub-ns synchronization

Deterministic & low-latency transmision

Summary

- WR Switch is deterministic by design:
 - Open-source, each source of latency is verifiable
 - Designed with latency in mind

- WR Switch is deterministic by design:
 - Open-source, each source of latency is verifiable
 - Designed with latency in mind
- WR Switch is a cut-through switch for <u>all traffic</u>:
 - Frames forwarded as soon as possible
 - Common optimization of latency in switches

- WR Switch is deterministic by design:
 - Open-source, each source of latency is verifiable
 - Designed with latency in mind
- WR Switch is a cut-through switch for <u>all traffic</u>:
 - Frames forwarded as soon as possible
 - Common optimization of latency in switches
- WR Switch is latency-optimized for selected traffic:

Sub-ns synchronization

Deterministic & low-latency transmision

Summary 0000

- WR Switch is deterministic by design:
 - Open-source, each source of latency is verifiable
 - Designed with latency in mind
- WR Switch is a cut-through switch for <u>all traffic</u>:
 - Frames forwarded as soon as possible
 - Common optimization of latency in switches
- WR Switch is latency-optimized for selected traffic:

Sub-ns synchronization

Deterministic & low-latency transmision

Summary 0000

- WR Switch is deterministic by design:
 - Open-source, each source of latency is verifiable
 - Designed with latency in mind
- WR Switch is a cut-through switch for <u>all traffic</u>:
 - Frames forwarded as soon as possible
 - Common optimization of latency in switches
- WR Switch is latency-optimized for selected traffic:
 - Fast Forward (FF):
 - Any traffic with selected D-MAC addresses
 - Optimization of latency due to switch operation
 - Released feature

Deterministic & low-latency transmision

Summary 0000

- WR Switch is deterministic by design:
 - Open-source, each source of latency is verifiable
 - Designed with latency in mind
- WR Switch is a cut-through switch for <u>all traffic</u>:
 - Frames forwarded as soon as possible
 - Common optimization of latency in switches
- WR Switch is latency-optimized for selected traffic:
 - Fast Forward (FF):
 - Any traffic with selected D-MAC addresses
 - Optimization of latency due to switch operation
 - Released feature
 - High Priority (HP):
 - Fast Forward traffic with selected priorities
 - Optimization of latency due to non-HP traffic
 - Experimental

Deterministic & low-latency transmision

Summary 0000

- WR Switch is deterministic by design:
 - Open-source, each source of latency is verifiable
 - Designed with latency in mind
- WR Switch is a cut-through switch for <u>all traffic</u>:
 - Frames forwarded as soon as possible
 - Common optimization of latency in switches
- WR Switch is latency-optimized for selected traffic:
 - Fast Forward (FF):
 - Any traffic with selected D-MAC addresses
 - Optimization of latency due to switch operation
 - Released feature
 - High Priority (HP):
 - Fast Forward traffic with selected priorities
 - Optimization of latency due to non-HP traffic
 - Experimental

Deterministic & low-latency transmision

Summary 0000

- WR Switch is deterministic by design:
 - Open-source, each source of latency is verifiable
 - Designed with latency in mind
- WR Switch is a cut-through switch for all traffic:
 - Frames forwarded as soon as possible
 - Common optimization of latency in switches
- WR Switch is latency-optimized for selected traffic:
 - Fast Forward (FF):
 - Any traffic with selected D-MAC addresses
 - Optimization of latency due to switch operation
 - Released feature
 - High Priority (HP):
 - Fast Forward traffic with selected priorities
 - Optimization of latency due to non-HP traffic
 - Experimental
- And what on Earth are priorities...?

Outline

Introduction

Sub-ns synchronization

- Precision Time Protocol (PTP, IEEE1588)
- Layer 1 Syntonization
- Digital Dual Mixer Time Difference (DDMTD)
- Link delay model
- Performance
- Standardization

Deterministic & low-latency transmision

- Network Latency Contributors
- Latency in WR Switch
- Advanced/Optional Concepts
- Performance

5 Sum

- Using synchronization and determinism
- Summary, status and plans

Sub-ns synchronization

Deterministic & low-latency transmision

Summary

Priorities - standard extension of Ethernet Frame

Sub-ns synchronization

Deterministic & low-latency transmision

Summary 0000

WR Switch Not Using priorities

Sub-ns synchronization

Deterministic & low-latency transmision

Summary

WR Switch Using Standard Priorities

Sub-ns synchronization

Deterministic & low-latency transmision

Summary 0000

WR Switch Using Standard Priorities

Sub-ns synchronization

Deterministic & low-latency transmision

Summary 0000

High Priority

Outline

Introduction

Sub-ns synchronization

- Precision Time Protocol (PTP, IEEE1588)
- Layer 1 Syntonization
- Digital Dual Mixer Time Difference (DDMTD)
- Link delay model
- Performance
- Standardization

Deterministic & low-latency transmision

- Network Latency Contributors
- Latency in WR Switch
- Advanced/Optional Concepts
- Performance

Summary

- Using synchronization and determinism
- Summary, status and plans
Introduction

Sub-ns synchronization

Deterministic & low-latency transmision

Summary

Latency of WR Switch for Fast Forward

Introduction

Sub-ns synchronization

Deterministic & low-latency transmision

Summary

Latency of WR Switch for High Priority

Outline

Introduction

- Sub-ns synchronization
- Precision Time Protocol (PTP, IEEE1588)
- Layer 1 Syntonization
- Digital Dual Mixer Time Difference (DDMTD)
- Link delay model
- Performance
- Standardization

Deterministic & low-latency transmision

- Network Latency Contributors
- Latency in WR Switch
- Advanced/Optional Concepts
- Performance

- Using synchronization and determinism
- Summary, status and plans

Outline

Introduction

- Sub-ns synchronization
- Precision Time Protocol (PTP, IEEE1588)
- Layer 1 Syntonization
- Digital Dual Mixer Time Difference (DDMTD)
- Link delay model
- Performance
- Standardization

Deterministic & low-latency transmision

- Network Latency Contributors
- Latency in WR Switch
- Advanced/Optional Concepts
- Performance

- Using synchronization and determinism
- Summary, status and plans

Introduction 000000 Sub-ns synchronization

Deterministic & low-latency transmision

Summary

Using synchronization and determinism

Sub-ns synchronization

Deterministic & low-latency transmision

Summary

Using synchronization and determinism

Sub-ns synchronization

Deterministic & low-latency transmision

Summary

Using synchronization and determinism

Sub-ns synchronization

Deterministic & low-latency transmision

Summary

Using synchronization and determinism

Outline

Introduction

- Sub-ns synchronization
- Precision Time Protocol (PTP, IEEE1588)
- Layer 1 Syntonization
- Digital Dual Mixer Time Difference (DDMTD)
- Link delay model
- Performance
- Standardization

Deterministic & low-latency transmision

- Network Latency Contributors
- Latency in WR Switch
- Advanced/Optional Concepts
- Performance

4

- Using synchronization and determinism
- Summary, status and plans

Open source (H/W & S/W) with commercial availability & support

- Open source (H/W & S/W) with commercial availability & support
- More applications than ever expected

- Open source (H/W & S/W) with commercial availability & support
- More applications than ever expected
- A versatile solution for controls & acquisition in non-radiation (WorldFIP is used at CERN in radiation currently, Powerlink in the future)

- Open source (H/W & S/W) with commercial availability & support
- More applications than ever expected
- A versatile solution for controls & acquisition in non-radiation (WorldFIP is used at CERN in radiation currently, Powerlink in the future)
- Standard-compatible and standard-extending
 - White Rabbit solutions to be part of IEEE1588 (PTP) standard
 - Compatible enhancement of IEEE802.1Q, similar mechanism in TSN

- Open source (H/W & S/W) with commercial availability & support
- More applications than ever expected
- A versatile solution for controls & acquisition in non-radiation (WorldFIP is used at CERN in radiation currently, Powerlink in the future)
- Standard-compatible and standard-extending
 - White Rabbit solutions to be part of IEEE1588 (PTP) standard
 - Compatible enhancement of IEEE802.1Q, similar mechanism in TSN
- The most accurate Ethernet-based synchronisation in the World

- Open source (H/W & S/W) with commercial availability & support
- More applications than ever expected
- A versatile solution for controls & acquisition in non-radiation (WorldFIP is used at CERN in radiation currently, Powerlink in the future)
- Standard-compatible and standard-extending
 - White Rabbit solutions to be part of IEEE1588 (PTP) standard
 - Compatible enhancement of IEEE802.1Q, similar mechanism in TSN
- The most accurate Ethernet-based synchronisation in the World
- WR Switch and so WR Network
 - Deterministic by (open) design
 - Latency-optimized for selected traffic
 - Upper-bound latency for HP traffic (experimental)

- Open source (H/W & S/W) with commercial availability & support
- More applications than ever expected
- A versatile solution for controls & acquisition in non-radiation (WorldFIP is used at CERN in radiation currently, Powerlink in the future)
- Standard-compatible and standard-extending
 - White Rabbit solutions to be part of IEEE1588 (PTP) standard
 - Compatible enhancement of IEEE802.1Q, similar mechanism in TSN
- The most accurate Ethernet-based synchronisation in the World
- WR Switch and so WR Network
 - Deterministic by (open) design
 - Latency-optimized for selected traffic
 - Upper-bound latency for HP traffic (experimental)
- Future plans
 - Mechanisms to increase reliability (http://cds.cern.ch/record/2261452)
 - 10 Gbit Ethernet

Thank you

Thank you !

www.cern.ch/white-rabbit

Extras

M. Lipiński White Rabbit Overview 43/4

Digital Dual Mixer Time Difference (DDMTD)

- Used for precise phase measurements
- Implemented in FPGA and SoftPLL
- 62.5MHz WR clock and N=14 results in 3.814kHz output signals

WR Node IP Core

www.ohwr.org/projects/white-rabbit/wiki/node

WR Node Reference Design for Hardware

www.ohwr.org/projects/white-rabbit/wiki/ wrreferencedesign

WR Reference Network

Performance of the Reference Network

Name	Requirement	In the reference WR network
Network size:	10 km & 2000 nodes	10 km & 2160 nodes
Synchronization :		
- accuracy over a year:	sub-ns	0.41 <i>ns</i>
 accuracy in transient: 	sub-ns	1.19 <i>ns</i>
- precision:	sub-50 ps	31 <i>ps</i>
Control message		
- allowed size	1200–6000 bytes	1200–6000 bytes
- max lost per year	1	1 with probability R(t)
Upper-bound network	< 500 μ <i>s</i>	\leq 78 μ s for network
latency	(derived from 1 ms)	\leq 150 μ s for control message
		0.9854 for $MTBF_{switch} = 40\ 000\ h$
Total reliability $R(t)$	\geq 0.98	0.9967 for <i>MTBF_{switch}</i> = 100 000 <i>h</i>
		0.9997 for <i>MTBF_{switch}</i> = 650 000 <i>h</i>