White Rabbit Robustness & Standardization Work in Progress

Maciej Lipinski

CERN BE-CO Hardware and Timing section

Technical Committee 12 March 2015

Outline

Data

Outline

Standardization

Future

Robustness in White Rabbit Network (WRN)

Definition

Standardization

Future

Robustness in White Rabbit Network (WRN)

Definition

WRN is robust/reliable if it provides all its services to all its clients at any time.

Services: time and data distribution

Robustness in White Rabbit Network (WRN)

Definition

- Services: time and data distribution
- Robustness of WRN:

Robustness in White Rabbit Network (WRN)

Definition

- Services: time and data distribution
- Robustness of WRN:
 - requires seamless redundancy, preservation of characteristics during network reconfiguration

Robustness in White Rabbit Network (WRN)

Definition

- Services: time and data distribution
- Robustness of WRN:
 - requires seamless redundancy, preservation of characteristics during network reconfiguration
 - achieved through redundancy of elements & data and support for fast switchover (hot spare)

Outline

Robustness	
00000000	

Support for seamless time distribution redundancy

Support for seamless time distribution redundancy

Outline

Robustness	
00000000	

Robust data distribution in a White Rabbit Network

Maciej Lipinski

• Forward Error Correction (FEC) - transparent layer:

- One message encoded into N Ethernet frames
- Recovery of message from any M (M<N) frames

• Forward Error Correction (FEC) - transparent layer:

- One message encoded into N Ethernet frames
- Recovery of message from any M (M<N) frames
- FEC can prevent data loss due to:

• Forward Error Correction (FEC) - transparent layer:

- One message encoded into N Ethernet frames
- Recovery of message from any M (M<N) frames
- FEC can prevent data loss due to:

bit error

• Forward Error Correction (FEC) - transparent layer:

- One message encoded into N Ethernet frames
- Recovery of message from any M (M<N) frames
- FEC can prevent data loss due to:
 - bit error
 - network reconfiguration

Robustness	
00000000	

Hardware support for Ethernet protocols to speed up network reconfiguration from (sub-)seconds to microseconds.

Hardware support for Ethernet protocols to speed up network reconfiguration from (sub-)seconds to microseconds.

Hardware support for Ethernet protocols to speed up network reconfiguration from (sub-)seconds to microseconds.

Hardware support for Ethernet protocols to speed up network reconfiguration from (sub-)seconds to microseconds.

Frame Loss and Latencies

Frame Size (bytes)	Load (%)	Tx Frames	Rx Frames	Frame Loss	Max Latency (uSec)
288	10	1,217,533	1,217,533	0	5.84
288	30	3,652,598	3,652,597	- 1	5.84
288	50	6,087,663	6,087,663	0	5.84
288	70	8,522,728	8,522,727	1	5.84
288	90	10,957,793	10,957,792	1	6.12

Lost not more than 1 frame during switchover

Hardware support for Ethernet protocols to speed up network reconfiguration from (sub-)seconds to microseconds.

Frame Loss and Latencies

Frame Size (bytes)	Load (%)	Tx Frames	Rx Frames	Frame Loss	Max Latency (uSec)	
288	10	1,217,533	1,217,533	0	5.84	
288	30	3,652,598	3,652,597	-1	5.84	
288	50	6,087,663	6,087,663	0	5.84	
288	70	8,522,728	8,522,727	-1	5.84	
288	90	10,957,793	10,957,792	1	6.12	
~3GB of data Lost not more than 1 frame during switchover						

Hardware support for Ethernet protocols to speed up network reconfiguration from (sub-)seconds to microseconds.

Rapid Spanning Tree Protocol:

- reconfig time: 1s
- tx in 1s: 100MB = 360k frames

Shortest Path Bridging Protocol

- reconfig time: 50ms
- tx in 50ms: 5MB = 18k frames

Frame Loss and Latencies

Lost not more than 1 frame during switchover

Outline

Data

3 Future

Robustness	Standardization ●○	Future oo
Why to standardize?		

Standardization brings stability and credibility to a technology

Standardization brings stability and credibility to a technology

• important for (big) companies

Standardization brings stability and credibility to a technology

- important for (big) companies
- attractive for users

Standardization brings stability and credibility to a technology

- important for (big) companies
- attractive for users

Widely used standard technologies:

Standardization brings stability and credibility to a technology

- important for (big) companies
- attractive for users

Widely used standard technologies:

less likely to get obsolete and lose company support

Standardization brings stability and credibility to a technology

- important for (big) companies
- attractive for users

Widely used standard technologies:

- less likely to get obsolete and lose company support
- available off-the-shelf for reasonable price

Standardization brings stability and credibility to a technology

- important for (big) companies
- attractive for users

Widely used standard technologies:

- less likely to get obsolete and lose company support
- available off-the-shelf for reasonable price

Standardization can help in providing robust solution for CERN's current & future needs.

Robustness

Standardization ○●

Future 00

IEEE 1588 standardization

IEEE 1588 standard revision

• Started in June 2013.

- Started in June 2013.
- Performed by P1588 Working Group with over 200 members

- Started in June 2013.
- Performed by P1588 Working Group with over 200 members
- Divided into 5 sub-committees

- Started in June 2013.
- Performed by P1588 Working Group with over 200 members
- Divided into 5 sub-committees
- High Accuracy sub-committee

- Started in June 2013.
- Performed by P1588 Working Group with over 200 members
- Divided into 5 sub-committees
- High Accuracy sub-committee
 - dedicated to White Rabbit
 - includes experts from companies & academia
 - chaired by Maciej Lipinski

Outline

Data

Future

Robustness

- Integrate time and data solutions
- Implement Forward Error Correction (FEC)
- Make the robustness features user-friendly

Future

Robustness

- Integrate time and data solutions
- Implement Forward Error Correction (FEC)
- Make the robustness features user-friendly

Standardization

- Make High Accuracy (a.k.a WR) improvements to IEEE1588 attractive for different industries/vendors
- Integrate data-related WR solutions with proper standards

Thank you

Thank you !