Introduction
 Time Distribution
 Data Distribution
 Components
 Applications
 Performance
 FIE and WR
 Summary
 Q&A

 0000
 0000000
 0000
 0000
 000
 00
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

White Rabbit: a next generation synchronization and control technology for large distributed systems

Maciej Lipiński

Hardware and Timing Section Beam Controls Group CERN PERG Institute of Electronic Systems Warsaw University of Technology

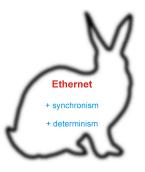
Future Internet Engineering Video-conference 23rd November 2012

Introduction	Time Distribution	Data Distribution	Components	Applications	Performance	FIE and WR	Summary	Q&A

Outline

- 2 Time Distribution
- 3 Data Distribution
- Components
- 6 Applications
- 6 Performance
 - FIE and WR
- 8 Summary

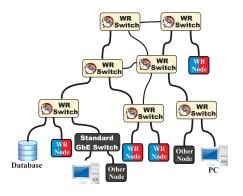
What is White Rabbit?


- Accelerator's control and timing
- International collaboration
- Based on well-known technologies
- Open Hardware and Open Software
- Main features:
 - transparent, high-accuracy synchronization
 - low-latency, deterministic data delivery
 - designed for high reliability

IntroductionTime DistributionData DistributionComponents
occocoApplications
occocoPerformanceFIE and WRSummary
occocoQ&A
o

What is White Rabbit?

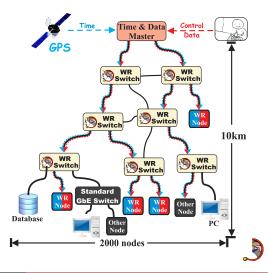
- Accelerator's control and timing
- International collaboration
- Based on well-known technologies
- Open Hardware and Open Software
- Main features:
 - transparent, high-accuracy synchronization
 - low-latency, **deterministic** data delivery
 - designed for high reliability



IntroductionTime DistributionData DistributionComponentsApplicationsPerformanceFIE and WRSummaryQ&A○●○○

White Rabbit – enhanced Ethernet

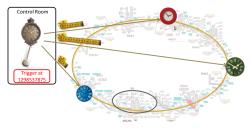
- Few thousands nodes
- Fiber medium
- Up to 10 km fiber links
- Bandwidth: 1 Gbps
- WR Switch: 18 ports
- Non-WR Devices
- Ethernet features (VLAN) & protocols (SNMP)



Introduction Time Distribution Data Distribution Components Applications Performance FIE and WR Summary Q&A

White Rabbit – enhanced Ethernet

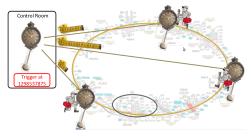
Two separate services (enhancements to Ethernet) provided by WR:


- High accuracy/precision synchronization
- Deterministic, reliable and low-latency Control Data delivery

Introduction Time Distribution Data Distribution Components oco

Why White Rabbit ?

- Renovation of CERN General Machine Timing (GMT)
- GMT is great but...:
 - RS-422, 500kbps
 - Unidirectional
 communication
 - Separate network required
 - Custom design, complicated maintenance
- White Rabbit is meant to solve these problems



Introduction Time Distribution Data Distribution Components oco

Why White Rabbit ?

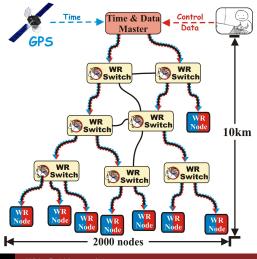
- Renovation of CERN General Machine Timing (GMT)
- GMT is great but...:
 - RS-422, 500kbps
 - Unidirectional
 communication
 - Separate network required
 - Custom design, complicated maintenance
- White Rabbit is meant to solve these problems

Why White Rabbit ?

- Renovation of CERN General Machine Timing (GMT)
- GMT is great but...:
 - RS-422, 500kbps
 - Unidirectional
 communication
 - Separate network required
 - Custom design, complicated maintenance
- White Rabbit is meant to solve these problems

Time distribution in White Rabbit

Data Distribution


 High accuracy/precision synchronization

Time Distribution

•0000000

Introduction

 Deterministic, reliable and low-latency Control Data delivery

Maciej Lipiński

White Rabbit

Applications

Performance

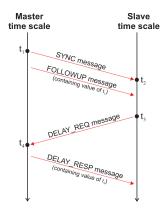
FIE and WR

Summary

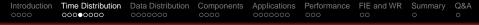
Q&A

oit 7/39

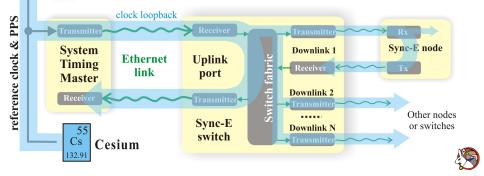
Introduction Time Distribution Data Distribution Components Applications Performance FIE and WR Summary Q&A of the second second


Time Distribution in White Rabbit Network

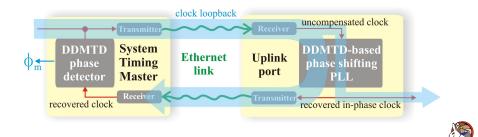
- Synchronization with sub-ns accuracy and ps precision
- Combination of
 - Precision Time Protocol (PTP) synchronization
 - Synchronous Ethernet (SyncE) syntonization (L2)
 - Digital Dual-Mixer Time Difference (DDMTD) phase detection


Introduction Time Distribution Data Distribution Components Applications Performance FIE and WR Summary Q&A

Precision Time Protocol (IEEE1588)


- Packet-based synchronization protocol (mapping over different physical medium)
- Synchronizes local clock with the master clock
- Link delay evaluated by measuring and exchanging packets tx/rx timestamps

Synchronous Ethernet (SyncE)


- All network devices use the same physical layer clock
- Clock is encoded in the Ethernet carrier and recovered by the receiver chip (PHY).

DDMTD: Phase tracking

- PTP limitation: timestamping granularity
- Solution: take advantage of SyncE and measure phase shift

- Extension to PTP (IEEE1588) defined as PTP Profile
- Addresses PTP's limitations (granularity, asymmetry, syntonization)
- Compatible with "standard" PTP gear
- Ongoing standardization effort
- Lab & field-tested for sub-ns synchronization

- Extension to PTP (IEEE1588) defined as PTP Profile
- Addresses PTP's limitations (granularity, asymmetry, syntonization)
- Compatible with "standard" PTP gear
- Ongoing standardization effort
- Lab & field-tested for sub-ns synchronization

According to ISPCS Plug Fest results ...

... White Rabbit is the most accurate PTP implementation in the world!

Introduction Time Distribution Data Distribution Components Applications Performance FIE and WR Summary Q&A

WR PTP Standardization effort

• We want to standardize WR PTP

WR PTP Standardization effort

• We want to standardize WR PTP

- Many possibilities
 - Profile (ITU-T, IEEE, ...)
 - AVB gen 2
 - Consortium

IntroductionTime DistributionData DistributionComponentsApplicationsPerformanceFIE and WRSummaryQ&A0000000000000000000000000000000

WR PTP Standardization effort

• We want to standardize WR PTP

- Many possibilities
 - Profile (ITU-T, IEEE, ...)
 - AVB gen 2
 - Consortium
- WR Standardization Group
 - John Eidson
 - ITU-T/IEEE people
 - Companies

WR PTP Standardization effort

Data Distribution

• We want to standardize WR PTP

Many possibilities

Time Distribution

Introduction

- Profile (ITU-T, IEEE, ...)
- AVB gen 2
- Consortium
- WR Standardization Group
 - John Eidson
 - ITU-T/IEEE people
 - Companies

John Eidson:

FIE and WR

Summary

Q&A

"Why don't you propose to include WR into PTPv3 ? You could do it in that way..."

Applications

Performance

WR PTP Standardization effort

Data Distribution

We want to standardize WR PTP

Many possibilities

Time Distribution

00000000

Introduction

- Profile (ITU-T, IEEE, ...)
- AVB gen 2
- Consortium
- WR Standardization Group
 - John Eidson
 - ITU-T/IEEE people
 - Companies
- ISPCS2012:
 - PTP will be openned for revision
 - WR PTP proposed to be included in PTPv3

John Eidson:

FIE and WR

Summary

Q&A

Performance

"Why don't you propose to include WR into PTPv3 ? You could do it in that way..."

Introduction

0000000

Time Distribution

Data Distribution Components Applications

Performance FIE and WR

Summary Q&A

WR PTP Standardization effort

Standardization goal

WR PTP included into PTPv3

Introduction

0000000

Time Distribution

Data Distribution Components Applications

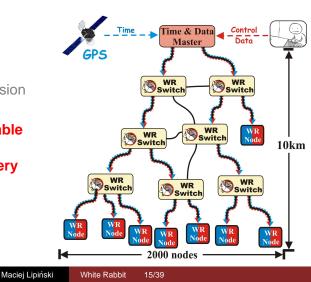
Performance FIE and WR

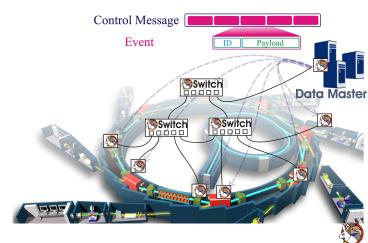
Summary Q&A

WR PTP Standardization effort

Standardization goal

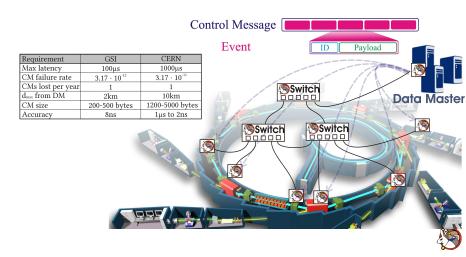
WR PTP included into PTPv3




Introduction Time Distribution Data Distribution Components Applications Performance FIE and WR Summary Q&A

Data distribution in White Rabbit

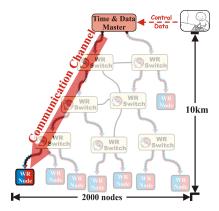
- High accuracy/precision synchronization
- Deterministic, reliable and low-latency Control Data delivery


Data distribution in WR Control System

 Introduction
 Time Distribution
 Data Distribution
 Components
 Applications
 Performance
 FIE and WR
 Summary
 Q&A

 0000
 0000000
 0000
 0000
 000
 000
 00
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Data distribution in WR Control System


0	al Data							
		000000						
Introduction	Time Distribution	Data Distribution	Components	Applications	Performance	FIE and WR	Summary	Q&A

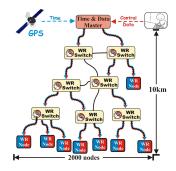
Control Data

- Two types of data:
 - Control Data (High Priority, HP)
 - Standard Data (Best Effort)

Characteristics of Control Data

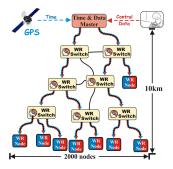
- Sent in Control Messages
- Sent by Data Master(s)
- Broadcast (one-to-alot)
- Deterministic and low latency
- Reliable delivery

- Re-transmission of Control Data not possible
- Forward Error Correction additional transparent layer:
 - One Control Message encoded into N Ethernet frames,
 - Recovery of Control Message from any M (M<N) frames
- FEC can prevent data loss due to:
 - bit error
 - network reconfiguration



Topology Redundancy

- Standard Ethernet solution: Rapid/Multi Spanning Tree Protocol
- Reconfiguration time: ≈ 1s (best: milliseconds)
- 1s = \approx 82 000 Ethernet Frames lost
- Solution:
 - take advantage of FEC
 - speed up (R/M)STP->eRSTP or
 - use multiple paths -> eLACP

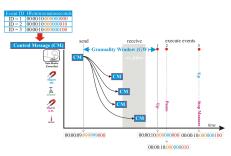


Determinism and low latency

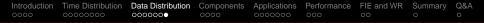
• Control Data:

7th Class of Service (priority)

- WR Switch:
 - Quality of Service: resource reservation
 - Upper bound latency by design: < 10*us*
 - Out-through
- Careful diagnostics

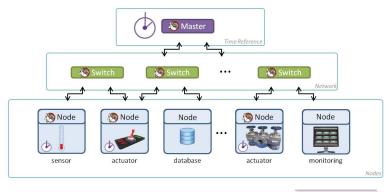


Determinism and low latency


• Control Data:

7th Class of Service (priority)

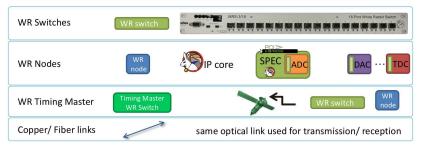
- WR Switch:
 - Quality of Service: resource reservation
 - Upper bound latency by design: < 10*us*
 - Out-through
- Careful diagnostics


Data Distribution summary

- Optional feature
- Openness enables everyone to verify the parameters
- Ongoing efforts (2012/2013)
- Commonalities with IEEE effort for 2nd gen Audio Video Bridging

Introduction Time Distribution Data Distribution Components Applications Performance FIE and WR Summary Q&A

White Rabbit Network Components



White Rabbit Network Components

A White Rabbit network is composed of

Introduction Time Distribution

ion Data Distribution

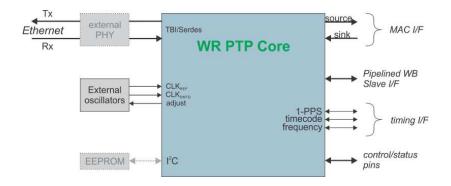
Components 0000

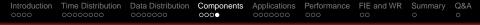
ts Applications

ns Performance

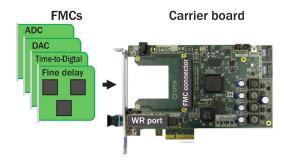
nce FIE and WR

Summary Q&A


White Rabbit Switch (V3)


- Central element of WR network
- Original design optimized for timing, designed from scratch
- 18 1000BASE-BX10 ports
- Capable of driving 10 km of SM fiber
- Open design (H/W and S/W)

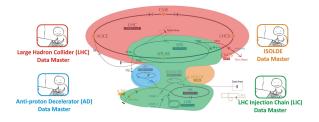
Introduction Time Distribution Data Distribution Components Applications Occoso of Components Applications Occoso of Components Occoso Occoso


WR Node: WR PTP Core

WR Node: SPEC board

Co-HT FMC-based Hardware Kit:

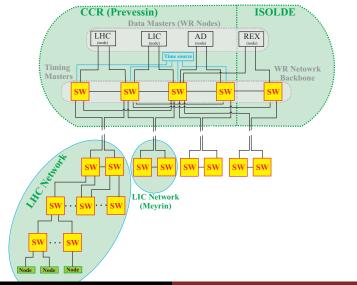
- FMCs (FPGA Mezzanine Cards) with ADCs, DACs, TDCs, fine delays, digital I/O
- Carrier boards in PCI-Express, VME and uTCA formats
- All carriers are equipped with a White Rabbit port


Introduction	Time Distribution	Data Distribution	Components	Applications	Performance	FIE and WR	Summary	Q&A
				000000				

White Rabbit applications

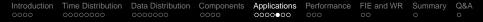
- Control and timing system
- Field bus recommended at CERN
- Time Transfer
- RF distribution
- Distributed oscilloscope
- ...

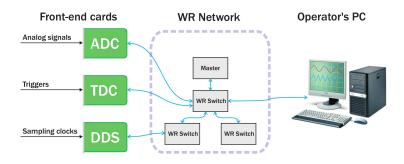
		Data Distribution		FIE and WR oo	Summary o	Q&A o
WR a	t CERN					



- 4 accelerator networks
- Separate Data Master (DM) for each network
- LIC Data Master communicates with other DMs and control devices in their networks
- Broadcast of Control Messages within network(s)

WR at CERN

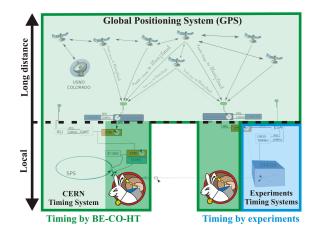

Ethernet Clock distribution a.k.a. Distributed DDS


Distributed Direct Digital Synthesis

- Replaces dozens of cables with a single fiber.
- Works over big distances without degrading signal quality.
- Can provide various clocks (TTC, RF, bunch clock) with a single, standardized link.

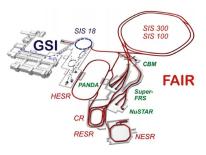
Distributed oscilloscope

- Common clock in the entire network: no skew between ADCs.
- Ability to sample with different clocks via Distributed DDS.
- External triggers can be time tagged with a TDC and used to reconstruct the original time base in the operator's PC.


CERN Neutrinos to Gran Sasso (CNGS)

Introduction Time Distribution Data Distribution Components oco cost oco co

CERN Neutrinos to Gran Sasso (CNGS)


- Investigation of neutrino oscillation
- Time of Flight (ToF) measurement

Other White Rabbit applications

Future applications:

GSI

IntroductionTime DistributionData DistributionComponentsApplicationsPerformanceFIE and WRSummaryQ&A00

Other White Rabbit applications

- Future applications:
 - GSI
 - HiSCORE: Gamma&Cosmic-Ray experiment (Tunka, Siberia)

- > Institute for Nuclear Research of the Russian Academy of Sciences
- > Moscow State University
- Irkutsk State University

Introduction Time Distribution Data Distribution Components Applications Performance FIE and WR

Other White Rabbit applications

- Future applications:
 - GSI
 - HiSCORE: Gamma&Cosmic-Ray experiment (Tunka, Siberia)
 - The Large High Altitude Air Shower Observatory (China)

Summary

Q&A

Data Distribution

Future applications:

Time Distribution

GSI

Introduction

- HiSCORE: Gamma&Cosmic-Ray experiment (Tunka, Siberia)
- The Large High Altitude Air Shower Observatory (China)
- Potential applications:
 - SuperGPS through optical networks

FIE and WR

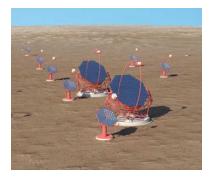
Summary

Q&A

Applications

000000

Data Distribution


Future applications:

Time Distribution

GSI

Introduction

- HiSCORE: Gamma&Cosmic-Ray experiment (Tunka, Siberia)
- The Large High Altitude Air Shower Observatory (China)
- Potential applications:
 - SuperGPS through optical networks
 - Cherenkov Telescope Array

FIE and WR

Summary

Q&A

Applications

000000

Data Distribution

Future applications:

Time Distribution

GSI

Introduction

- HiSCORE: Gamma&Cosmic-Ray experiment (Tunka, Siberia)
- The Large High Altitude Air Shower Observatory (China)
- Potential applications:
 - SuperGPS through optical networks
 - Cherenkov Telescope Array
 - ITER

FIE and WR

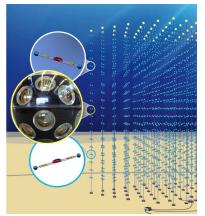
Summary

Q&A

Applications

000000

Data Distribution


Future applications:

Time Distribution

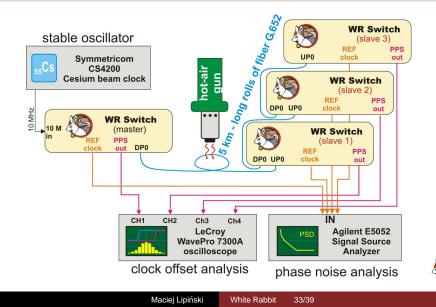
GSI

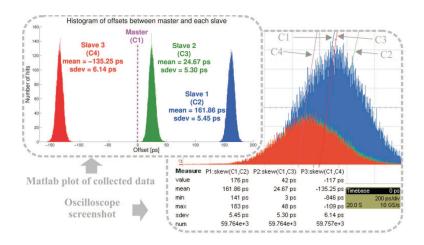
Introduction

- HiSCORE: Gamma&Cosmic-Ray experiment (Tunka, Siberia)
- The Large High Altitude Air Shower Observatory (China)
- Potential applications:
 - SuperGPS through optical networks
 - Cherenkov Telescope Array
 - ITER
 - European deep-sea research infrastructure (KM3NET)

FIE and WR

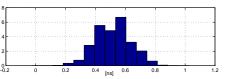
Summary

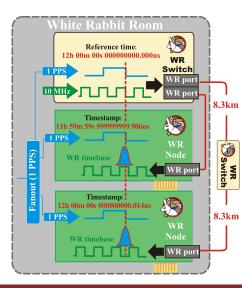

Q&A


Applications

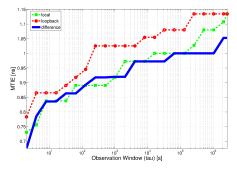
000000

WR time transfer performance: lab tests


WR time transfer performance: lab tests



WR time transfer performance: deployment for CNGS


- Duration: 31 d, 7 h, 40 s (2.7 * 10⁶ samples)
- WR Nodes with TDC used
- Measurement includes inaccuracy of TDC
- Timestamping reference PPS
- Accuracy: 0.517 ns
- Precision: 0.119 ns (std. dev)

WR time transfer performance: deployment for CNGS

Out of 2.7 * 10⁶ samples 9 values of x_{diff} [0.0003%] exceeded MTIE=1ns

Future Internet Engineering and White Rabbit(1)

Future Internet Engineering

- redefines/improves 3-7 OSI Layers
- uses cutting edge 1-2 OSI Layers (Ethernet)
- virtualizes

White Rabbit

- improves 2 OSI Layer (i.e. GbE)
- brings into Ethernet Networks:
 - high accuracy synchronization
 - determinism
 - reliability
- provides hardware-support

Future Internet Engineering and White Rabbit(2)

Future Internet Engineering

- Uses cutting edge Layer 2 equipment (PIONIER)
- Large scale: used globally with millions of nodes
- Application: mass scale, public

White Rabbit

- Uses White Rabbit Layer 2 equipment
- Large scale: tens of km with thousands of nodes
- Application: dedicated, isloated, well-controlled

		Data Distribution					Summary ●	Q&A o			
Summary											

White Rabbit

- 2000 nodes
- < 1ns accuracy</p>
- determinism and reliability
- tested up to 10km
- FIE and WR are complementary
- FIE is general-purpose and global-scale technology
- WR is specialized-purposed and large-scale technology
- WR improves the technology that FIE uses

Questions and answers

