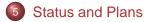
Reliability in WRN	Redundancy	Determinizm	Standardization	Status and Plans
000	00000	00000	0000	00

Reliability in White Rabbit Network

Maciej Lipiński

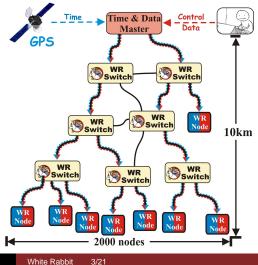
Hardware and Timing Section / Institute of Electronic Systems CERN / Warsaw University of Technology

> February 8 & 9, 2013 Wilga Symposium Warsaw

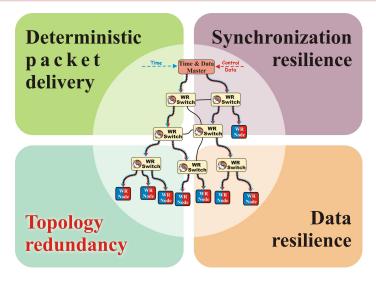


Reliability in WRN	Redundancy 00000	Determinizm 00000	Standardization	Status and Plans
Outline				

- 2 Redundancy
- 3 Determinizm



Reliability in WRN ●○○	Redundancy 00000	Determinizm 00000	Standardization	Status and Plans
White Dah	hit. Timo л	Data		


White Rabbit: Time + Data

Whtie Rabbit provides:

- High accuracy/precision synchronization
- Deterministic, reliable and low-latency Control Data delivery



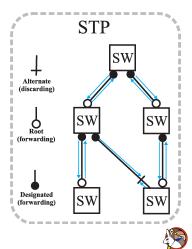
Reliability in WRN ○○●	Redundancy 00000	Determinizm 00000	Standardization	Status and Plans
Control Data	а			

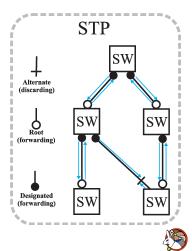
- Two types of data:
 - Control Data (High Priority, HP)
 - Standard Data (Best Effort)
- Failure of Control Data delivery:
 - medium imperfection
 - network element failure
 - exceeded latency

- Forward Error Correction (FEC) additional transparent layer:
 - One Control Message encoded into N Ethernet frames,
 - Recovery of Control Message from any M (M<N) frames

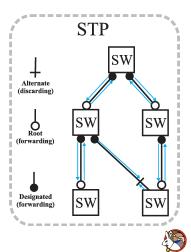
- Forward Error Correction (FEC) additional transparent layer:
 - One Control Message encoded into N Ethernet frames,
 - Recovery of Control Message from any M (M<N) frames
- FEC can prevent data loss due to:

- Forward Error Correction (FEC) additional transparent layer:
 - One Control Message encoded into N Ethernet frames,
 - Recovery of Control Message from any M (M<N) frames
- FEC can prevent data loss due to:
 - bit error

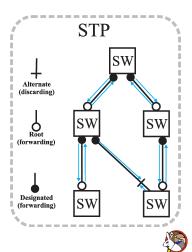

- Forward Error Correction (FEC) additional transparent layer:
 - One Control Message encoded into N Ethernet frames,
 - Recovery of Control Message from any M (M<N) frames
- FEC can prevent data loss due to:
 - bit error
 - network reconfiguration


Reliability in WRN	Redundancy ○●○○○	Determinizm 00000	Standardization	Status and Plans
Topology F	Redundancy			

Standard Ethernet solution: Spanning Tree Protocol (STP)

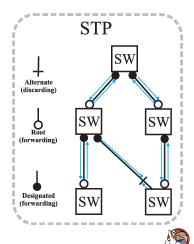

Reliability in WRN	Redundancy ○●○○○	Determinizm 00000	Standardization	Status and Plans
	Redundancy			

- Standard Ethernet solution: Spanning Tree Protocol (STP)
- Reconfiguration time: ≈ 1s (best: milliseconds)


Reliability in WRN	Redundancy ○●o○○	Determinizm 00000	Standardization	Status and Plans
Topology F	Redundancy			

- Standard Ethernet solution: Spanning Tree Protocol (STP)
- Reconfiguration time: ≈ 1s (best: milliseconds)
- 1s = ≈ 82 000 frames lost

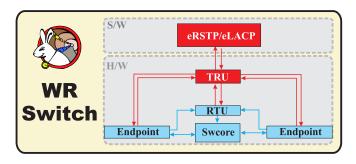
Reliability in WRN	Redundancy ○●o○○	Determinizm 00000	Standardization	Status and Plans
Topology F	Redundancy			


- Standard Ethernet solution: Spanning Tree Protocol (STP)
- Reconfiguration time: ≈ 1s (best: milliseconds)
- 1s = ≈ 82 000 frames lost
- Extensive research

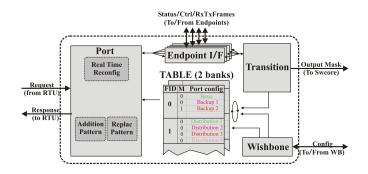
Reliability in WRN	Redundancy ○●○○○	Determinizm 00000	Standardization 0000	Status and Plans	
Topology Redundancy					

Topology Redundancy

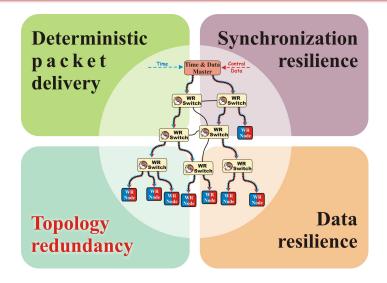
- Standard Ethernet solution: Spanning Tree Protocol (STP)
- Reconfiguration time: ≈ 1s (best: milliseconds)
- 1s = ≈ 82 000 frames lost
- Extensive research
- Solution:
 - take advantage of FEC
 - speed up STP->eRSTP


000	00000	00000	0000	00		
Reliable Data Distribution						

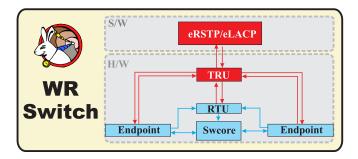
- eRSTP+FEC=seamless redundancy <=> max 2 frames
- 500 bytes message (288 byte FEC) max re-conf ≈2.3us
- Requires:
 - hardware support
 - protocol modification


Reliability in WRN	Redundancy ○○○●○	Determinizm 00000	Standardization	Status and Plans		
Reliable Data Distribution						

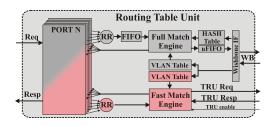
- Two solutions considered:
 - enhanced Rapid Spanning Tree Protocol (eRSTP)
 - enhanced Link Aggregation Control Protocol (eLACP)
- Common gateware: universal and decoupled HDL unit
- Specific software: daemon+protocol



- universal unit for topology resolution protocol
 - port switch-over between redundant ports (eRSTP)
 - traffic distribution between redundant ports (eLACP)
- fully pipelined (3 cycles to answer, each cycle new request)

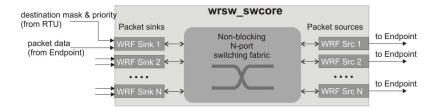


Reliability in WRN	Redundancy	Determinizm	Standardization	Status and Plans		
000	00000	○●○○○	0000			
Determinism and low latency						


Key switch modules require:

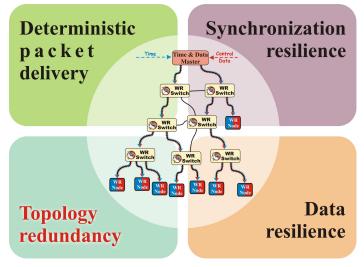
- Deterministic behavior
- Ultra low latency for Control Data

Reliability in WRN	Redundancy ooooo	Determinizm ○○●○○	Standardization	Status and Plans
Routing Tab	le Unit			



- Fully deterministic and non-dropping for Control Data
- Fast Match Engine
 - PTP/broadcast/Link-limited/configurable MACs traffic
 - configurable hardware support for Control Data
 - response in max (N+5) cycles
 - interface with TRU

Reliability in WRN	Redundancy ooooo	Determinizm ○○○●○	Standardization	Status and Plans
Switching	Coro			



- optimization (wire speed)
- separation resources for Control Data
- improvement output queues scheduling (decoupled)
- implementation of time-triggered output scheduling
- interface with TRU

Reliability in WRN	Redundancy 00000	Determinizm 00000	Standardization ●○○○	Status and Plans		
White Rabbit and Standards						

- We want to be as standards as possible (eRSTP)
- We want to standardize (WRPTP)
- Many possibilities:
 - ITU-T
 - IEEE
 - AVB gen2
- Standardization Group
 - John Eidson
 - ITU-T people
 - Companies

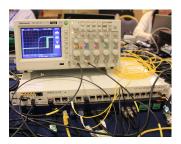
Reliability in WRN	Redundancy	Determinizm	Standardization	Status and Plans
			0000	

ISPCS2012 IEEE Conference in San Francisco

- All about PTP
 - Implementations
 - Innovations
 - Standard issues
- Consists of
 - PlugFest
 - Paper Presentation
 - Special Session

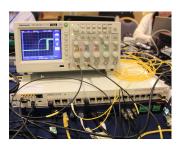
2012 International IEEE Symposium on Precision Clock Synchronization for Measurement, Control, and Communication

September 23 - 28, 2012 || San Francisco, California, USA



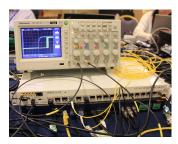
Reliability in WRN	Redundancy	Determinizm	Standardization	Status and Plans
০০০	00000	00000	○○●○	
WR @ ISPC	CS2012			

Paper Presentations


- Individual tests
- PTP network tests
- Bug-fixes

Reliability in WRN	Redundancy 00000	Determinizm 00000	Standardization ○○●○	Status and Plans
WR @ ISF	CS2012			

- Individual tests
- PTP network tests
- Bug-fixes

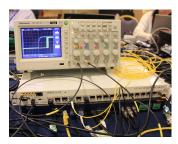

Paper Presentations

- WR Session
- 2 papers
- 1 poster

Reliability in WRN	Redundancy 00000	Determinizm 00000	Standardization ○○●○	Status and Plans
WR @ ISP	CS2012			

- Individual tests
- PTP network tests
- Bug-fixes

Paper Presentations


- WR Session
- 2 papers
- 1 poster

Reliability in WRN	Redundancy 00000	Determinizm 00000	Standardization ○○●○	Status and Plans
WR @ ISF	PCS2012			

- Individual tests
- PTP network tests
- Bug-fixes

Paper Presentations

- WR Session
- 2 papers
- 1 poster

- WR Proposal
- Warm reception
- Strong support

Reliability in WRN	00000	00000	000●	00		
Standardization Plans						

WRPTP

- strongly supported by many
- 2-3 April IEEE meeting to start working on PTP revision
 - Project Authorization Request

interest from many companies

eRSTP

consultancy

лдацон

similar to newest developments of IEEE (e.g. AVGgen2)

Reliability in WRN	Redundancy ooooo	Determinizm 00000	Standardization	Status and Plans ●○
Status				

Deterministic Packet Delivery

- Cut-through
 - Separate resources
- Output queuing
- Optimization

Topology redundancy

- Extensive study
 - Hardware(eRSTP)
- Software(eRSTP)

Data Resilience

- FEC Encoder more work
- FEC Decoder

	Reliability in WRN	Redundancy 00000	Determinizm 00000	Standardization 0000	Status and Plans ○●
Questions and answers					

