Introduction Technology Equipment Management Applications Standardisation Ongoing Work Summary

Introduction to White Rabbit

Greg Daniluk, Maciej Lipiński

CERN BE-CO Hardware and Timing section

BE seminar 15 November 2019 Introduction Technology Equipment Management Applications Standardisation Ongoing Work Summary on Outline

- 2 Technology
- 3 Equipment
- 4 Management
- 6 Applications
- 6 Standardisation
 - Ongoing Work
- 8 Summary

Introduction	Technology	Equipment	Management	Applications	Standardisation	Ongoing Work	Summary 00	
Outlin	е							

- Technology
- 3 Equipment
- 4 Management
- 5 Applications
- 6 Standardisation
- Ongoing Work
- 8 Summary

Introduction ●○	Technology	Equipment	Management	Applications	Standardisation	Ongoing Work	Summary 00
What	is Whi	te Rab	bit?				

CERN and GSI initiative for control & timing

Introduction ●○	Technology	Equipment	Management	Applications	Standardisation	Ongoing Work	Summary 00	
What	is Whi	te Rab	bit?					

- CERN and GSI initiative for control & timing
- Based on well-established standards
 - Ethernet (IEEE 802.3)
 - Bridged Local Area Network (IEEE 802.1Q)
 - Precision Time Protocol (IEEE 1588)

What is White Rabbit?

Technology

Introduction

00

CERN and GSI initiative for control & timing

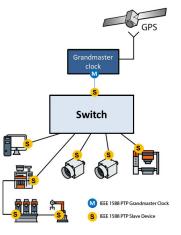
Equipment

Management

Applications

- Based on well-established standards
 - Ethernet (IEEE 802.3)
 - Bridged Local Area Network (IEEE 802.1Q)
 - Precision Time Protocol (IEEE 1588)

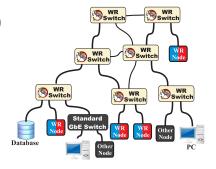
Ongoing Work


Summary

Standardisation

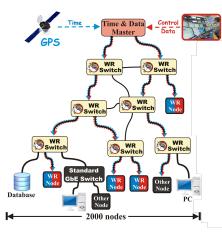
Introduction Technology Equipment Management ocococo Standardisation Ongoing Work Summary oc

What is White Rabbit?

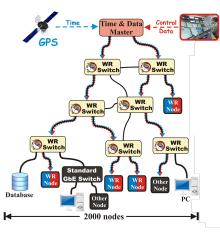

- CERN and GSI initiative for control & timing
- Based on well-established standards
 - Ethernet (IEEE 802.3)
 - Bridged Local Area Network (IEEE 802.1Q)
 - Precision Time Protocol (IEEE 1588)

Introduction Technology Equipment Management Applications Standardisation Ongoing Work Summary

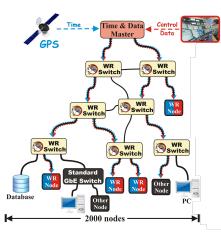
What is White Rabbit?


- CERN and GSI initiative for control & timing
- Based on well-established standards
 - Ethernet (IEEE 802.3)
 - Bridged Local Area Network (IEEE 802.1Q)
 - Precision Time Protocol (IEEE 1588)
- Extends standards to provide
 - Sub-ns synchronisation
 - Deterministic data transfer

Introduction Technology Equipment Management Applications Standardisation Ongoing Work Summary 00


What is White Rabbit?

- CERN and GSI initiative for control & timing
- Based on well-established standards
 - Ethernet (IEEE 802.3) •
 - Bridged Local Area Network (IEEE 802.1Q)
 - Precision Time Protocol (IEEE 1588)
- Extends standards to provide
 - Sub-ns synchronisation
 - Deterministic data transfer


Introduction Technology Equipment Management Applications Standardisation Ongoing Work Summary on What is White Rabbit?

- CERN and GSI initiative for control & timing
- Based on well-established standards
 - Ethernet (IEEE 802.3)
 - Bridged Local Area Network (IEEE 802.1Q)
 - Precision Time Protocol (IEEE 1588)
- Extends standards to provide
 - Sub-ns synchronisation
 - Deterministic data transfer
- Initial specs: links ≤10 km & ≤2000 nodes

Introduction Technology Equipment Management Applications Standardisation Ongoing Work Summary on What is White Rabbit?

- CERN and GSI initiative for control & timing
- Based on well-established standards
 - Ethernet (IEEE 802.3)
 - Bridged Local Area Network (IEEE 802.1Q)
 - Precision Time Protocol (IEEE 1588)
- Extends standards to provide
 - Sub-ns synchronisation
 - Deterministic data transfer
- Initial specs: links ≤10 km & ≤2000 nodes
- Open Source and commercially available

Many users worldwide, including metrology labs...

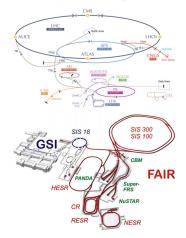
Applications

Management

CERN and GSI

Technology

Equipment


Introduction

CERN's accelerator complex

Ongoing Work

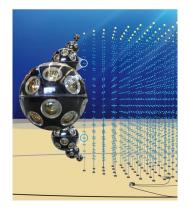
Summary

Standardisation

Introduction Technology Equipment Management OCOCO Standardisation Ongoing Work Summary OCOCO Many users worldwide, including metrology labs...

CERN and GSI

• The Large High Altitude Air Shower Observatory


Management

Applications Sta

Standardisation

Ongoing Work Summary

- CERN and GSI
- The Large High Altitude Air Shower Observatory
- KM3NET: Cubic Kilometre Neutrino Telescope

tions Standard

Standardisation

Ongoing Work Summary

- CERN and GSI
- The Large High Altitude Air Shower Observatory
- KM3NET: Cubic Kilometre Neutrino Telescope
- German Stock Exchange

00

Management

Applications

Standardisation

Ongoing Work Summary

- CERN and GSI
- The Large High Altitude Air Shower Observatory
- KM3NET: Cubic Kilometre Neutrino Telescope
- German Stock Exchange •
- Mikes: Finish National Time Lab

Management

Applications Sta

Standardisation

Ongoing Work S

Summary

Many users worldwide, including metrology labs...

- CERN and GSI
- The Large High Altitude Air Shower Observatory
- KM3NET: Cubic Kilometre Neutrino Telescope
- German Stock Exchange
- Mikes: Finish National Time Lab
- National Time Labs in Netherlands (VSL), France (LNE-SYRTE), USA (NIST), UK (NPL) and Italy (INRIM)

Institute

Management

Applications Sta

Standardisation

Ongoing Work Summary

- CERN and GSI
- The Large High Altitude Air Shower Observatory
- KM3NET: Cubic Kilometre Neutrino Telescope
- German Stock Exchange
- Mikes: Finish National Time Lab
- National Time Labs in Netherlands (VSL), France (LNE-SYRTE), USA (NIST), UK (NPL) and Italy (INRIM)
- ESA: European Space Agency for Galileo

Management

Applications Sta

Standardisation

Ongoing Work S

Summary

Many users worldwide, including metrology labs...

- CERN and GSI
- The Large High Altitude Air Shower Observatory
- KM3NET: Cubic Kilometre Neutrino Telescope
- German Stock Exchange
- Mikes: Finish National Time Lab
- National Time Labs in Netherlands (VSL), France (LNE-SYRTE), USA (NIST), UK (NPL) and Italy (INRIM)
- ESA: European Space Agency for Galileo

See user page: http://www.ohwr.org/projects/white-rabbit/wiki/WRUsers

Introduction	Technology	Equipment	Management	Applications	Standardisation	Ongoing Work	Summary 00
Outlin	е						

Introduction

- 2 Technology
- 3 Equipment
- 4 Management
- 6 Applications
- 6 Standardisation
- Ongoing Work
- 8 Summary

Introduction Technology Equipment Management Ocococo Standardisation Ongoing Work Summary

White Rabbit technology - sub-ns synchronisation

Based on

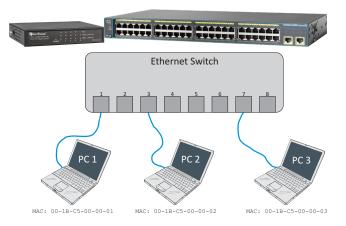
- Gigabit Ethernet over fibre
- IEEE 1588 Precision Time Protocol

Introduction Technology Equipment Management Applications Standardis

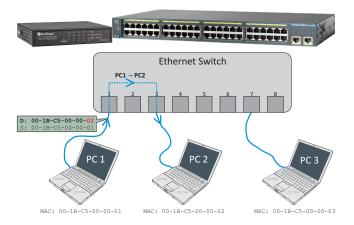
Standardisation Ong

Ongoing Work Summary

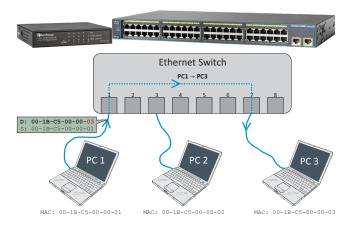
White Rabbit technology - sub-ns synchronisation

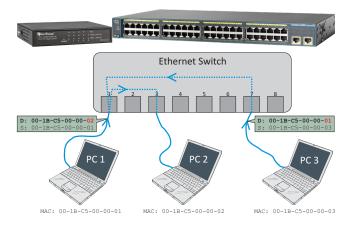

Based on

- Gigabit Ethernet over fibre
- IEEE 1588 Precision Time Protocol

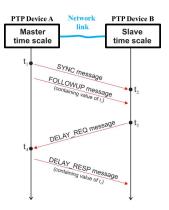

Enhanced with

- Layer 1 syntonisation
- Digital Dual Mixer Time Difference (DDMTD)
- Link delay model


Introduction Technology Equipment Management Applications Standardisation Ongoing Work Summary 000000


Introduction Technology Equipment Management oco Management oco Standardisation Ongoing Work Summary oc

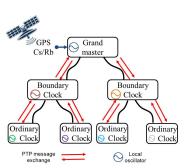
Introduction Technology Equipment Management Applications Standardisation Ongoing Work Summary



Introduction Technology Equipment Management Applications Standardisation Ongoing Work Summary

Introduction Technology Equipment Management Applications Standardisation Ongoing Work

Precision Time Protocol (IEEE 1588)


- Frame-based synchronisation protocolSimple calculations:
 - link delay: $\delta_{ms} = \frac{(t_4 t_1) (t_3 t_2)}{2}$
 - offset from master: $OFM = t_2 (t_1 + \delta_{ms})$

Summary

Precision Time Protocol (IEEE 1588)

Management

Equipment

Technology

0000000

Introduction

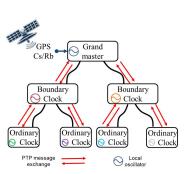
• Frame-based synchronisation protocol

Standardisation

Ongoing Work

Summary

Simple calculations:


Applications

- link delay: $\delta_{ms} = \frac{(t_4 t_1) (t_3 t_2)}{2}$
- offset from master: $OFM = t_2 (t_1 + \delta_{ms})$
- Hierarchical network

Precision Time Protocol (IEEE 1588)

Management

Equipment

Technology

0000000

Introduction

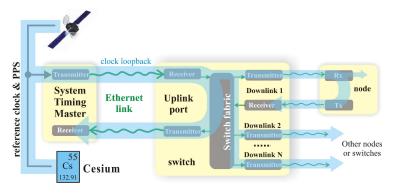
• Frame-based synchronisation protocol

Standardisation

Ongoing Work

Summary

Simple calculations:


Applications

- link delay: $\delta_{ms} = \frac{(t_4 t_1) (t_3 t_2)}{2}$
- offset from master: $OFM = t_2 (t_1 + \delta_{ms})$
- Hierarchical network
- Shortcomings:
 - devices have free-running oscillators
 - frequency drift compensation vs. message exchange traffic
 - assumes symmetry of medium
 - timestamps resolution

Introduction Technology Equipment Management Applications Standardisation Ongoing Work Summary

Layer 1 Syntonisation

- Clock is encoded in the Ethernet carrier and recovered by the receiver chip
- All network devices use the same physical layer clock
- Clock loopback allows phase detection to enhance precision of timestamps

Digital Dual Mixer Time Difference (DDMTD)

Applications

Standardisation

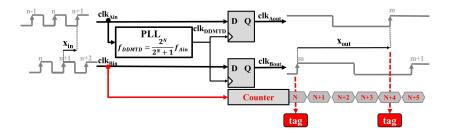
Ongoing Work

Summary

Precise phase measurements in FPGA

Management

WR parameters:

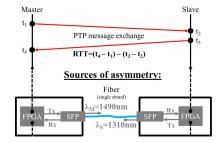

Technology

Introduction

clk_{in} = 62.5 MHz

Equipment

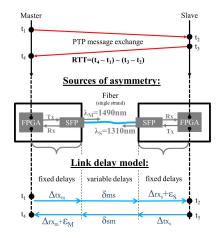
- *clk_{DDMTD}* = 62.496185 MHz (N=14)
- *clk_{out}* = 3.814 kHz
- Theoretical resolution of 0.977 ps


Introduction	Technology ooooo●o	Equipment	Applications	Ongoing Work	Summary 00
Link d	elay m	nodel			

• Correction of RTT for asymmetries

Introduction	Technology ooooo●o	Equipment	Management	Applications	Standardisation	Ongoing Work o	Summary 00	
Link delay model								

- Correction of RTT for asymmetries
- Asymmetry sources: FPGA, PCB, SFP electrics/optics, chromatic dispersion

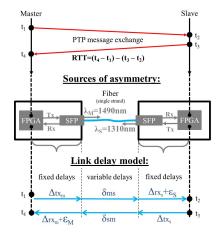


Introduction	Technology ooooo●o	Equipment	Management	Applications	Standardisation	Ongoing Work o	Summary 00	
Link delay model								

- Correction of RTT for asymmetries
- Asymmetry sources: FPGA, PCB, SFP electrics/optics, chromatic dispersion
- Link delay model:
 - Fixed delays FPGA, PCB, SFP
 - Variable delays fiber:

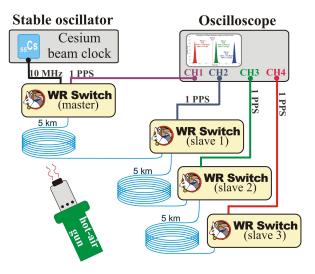
$$\alpha = \frac{\nu_g(\lambda_s)}{\nu_g(\lambda_m)} - 1 = \frac{\delta_{ms} - \delta_{sm}}{\delta_{sm}}$$

• Calibration procedure to find fixed delays and α

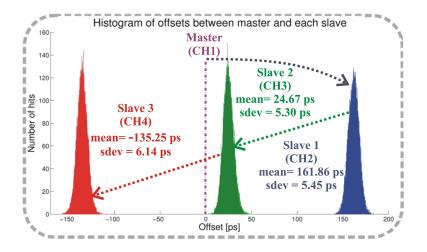

Introduction	Technology ooooo●o	Equipment	Management		Standardisation	Ongoing Work o	Summary 00	
Link delay model								

- Correction of RTT for asymmetries
- Asymmetry sources: FPGA, PCB, SFP electrics/optics, chromatic dispersion
- Link delay model:
 - Fixed delays FPGA, PCB, SFP
 - Variable delays fiber:

$$\alpha = \frac{\nu_g(\lambda_s)}{\nu_g(\lambda_m)} - 1 = \frac{\delta_{ms} - \delta_{sm}}{\delta_{sm}}$$

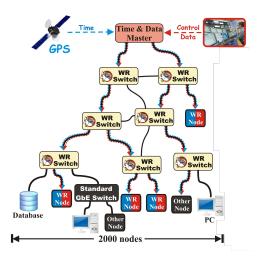

- Calibration procedure to find fixed delays and α
- Accurate offset from master (OFM):

$$\begin{split} \delta_{ms} &= \frac{1+\alpha}{2+\alpha} \left(RTT - \sum \Delta - \sum \epsilon \right) \\ OFM &= t_2 - \left(t_1 + \delta_{ms} + \Delta_{txm} + \Delta_{rxs} + \epsilon_S \right) \end{split}$$


Introduction Technology Equipment Management Applications Standardisation Ongoing Work Summary

Out-of-the-box performance

Introduction Technology Equipment Management Applications Standardisation Ongoing Work Summary


Out-of-the-box performance

Introduction	Technology	Equipment	Management	Applications	Standardisation	Ongoing Work	Summary 00
Outlin	е						

- Introduction
- 2 Technology
- 3 Equipment
- 4 Management
- 6 Applications
- 6 Standardisation
- Ongoing Work
- B Summary

Introduction Technology Equipment Management OCON Standardisation Ongoing Work Summary OCON Typical WR network

Introduction

Equipment

Management

Applications S

Standardisation

Ongoing Work

Summary 00

WR Switch

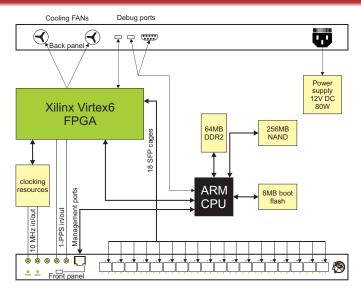
Technology

- Central element of WR network
- 18 port gigabit Ethernet switch with WR features
- Default optical transceivers: up to 10km, single-mode fiber
- Fully open, commercially available from 4 companies

Introduction

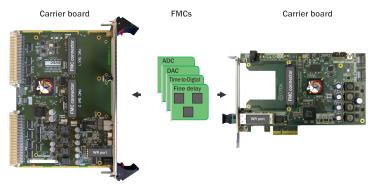
Technology Equipment

Management

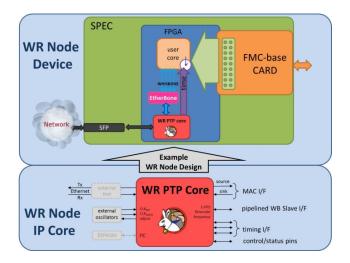

Applications St

Standardisation

Ongoing Work


Summary 00

WR Switch: hardware block diagram

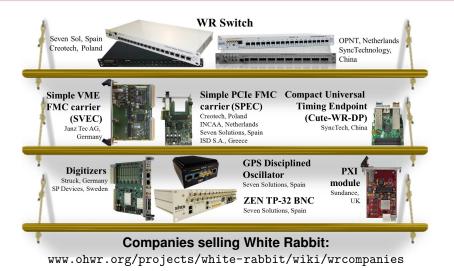

Introduction Technology Equipment Management oco

WR Node: carriers + mezzanines

- All carrier cards are equipped with a White Rabbit port
- All carrier cards instantiate WR PTP Core
- Mezzanines can use the accurate clock signal and timecode (synchronous sampling clock, trigger time tag, ...)

Introduction	Technology	Equipment oooo●o	Management	Applications	Standardisation	Ongoing Work	Summary 00	
WR PTP Core								

Introduction Technology Equipment Management


Applications St

Standardisation

Ongoing Work

Summary

Open and commercially available off-the-shelf

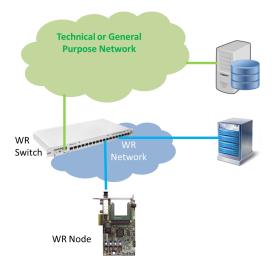
Greg Daniluk, Maciej Lipiński Introduction to White Rabbit

Introduction	Technology	Equipment	Management	Standardisation	Ongoing Work	Summary 00	
Outlin	e						

- Introduction
- 2 Technology
- 3 Equipment
- 4 Management
- 6 Applications
- 6 Standardisation
- Ongoing Work
- 8 Summary

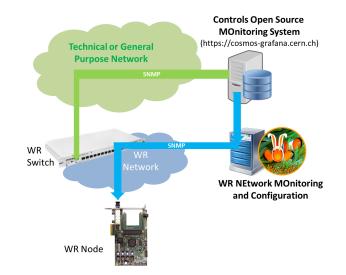
Introduction Technology Equipment Management Applications Standardisation Ongoing Work Summary

• White Rabbit is an extension of Ethernet


- White Rabbit is an extension of Ethernet
- It can be managed using standard protocols and tools:
 - Simple Network Management Protocol (SNMP)
 - Syslog
 - Link Layer Discovery Protocol (LLDP)
 - Kerberos-based authentication

Introduction Technology Equipment Management Applications Standardisation Ongoing Work Summary

- White Rabbit is an extension of Ethernet
- It can be managed using standard protocols and tools:
 - Simple Network Management Protocol (SNMP)
 - Syslog
 - Link Layer Discovery Protocol (LLDP)
 - Kerberos-based authentication
- It can be debugged using standard tools:
 - Wireshark
 - Tcpdump
 - Professional Ethernet testers


Introduction Technology Equipment Management Applications Standardisation Ongoing Work Summary oo oooooo oo oo oo oo oo oo oo oo

WR Network vs. TN/GPN Network

 Introduction
 Technology
 Equipment
 Management
 Applications
 Standardisation
 Ongoing Work
 Summary

 BE-CO services:
 Monitoring with COSMOS/Grafana

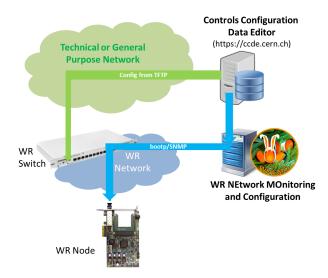
Introduction

Management

Applications Sta

Standardisation

Ongoing Work


Summary

BE-CO services: Monitoring with COSMOS/Grafana

🌀 - 🗱 White Rabbit Switch - \star 🕫 🖻 💠			✓ Zoom Out > ② Last 30	minutes Refresh every 30s 🏾 🎜						
WRS Hostname All • Building All • Mode PRO •										
PRO WRS ping status by building										
Time	Building									
2018-02-27 11:25:19		ctdwa-193-cttad								
2018-02-27 11:24:03		ctdwa-sm18-ctts1								
2018-02-27 11:24:58		ctdwa-sr4-clist1								
2018-02-27 11:24:03										
2018-02-27 11:25:01										
2018-02-27 11:28:37										
2018-02-27 11:28:25										
2018-02-27 11:25:00		ctdwa-ccr-cttmaster								
V White Rabbit Switches Status										
ctdwa-193-cttad ctdwa-354-cttmaster1	ctdwa-355-cwrsps	ctdwa-ccr-clist1	ctdwa-ccr-ctnallm1	ctdwa-ccr-cttmaster						
OK Warning	ОК	ОК	ОК	ОК						
ctdwa-sm18-ctts1 ctdwa-sr4-clist1				k						

 Introduction
 Technology
 Equipment
 Management
 Applications
 Standardisation
 Ongoing Work
 Summary

 BE-CO services:
 Configuration with CCDE

Introduction

Technology Equip

Equipment

Management

Applications St

Standardisation

Ongoing Work

Summary

BE-CO services: Configuration with CCDE

Controls Configuration	Switch Configura	tion		2
Dashboard Hardware	Switch browser Switch Name	Version [HW / FW]	Basic Advanced Ports Vlans	
NXCals	Switch Name	Version [HW / FW] ~	Host name ctdwa-774-cinm1 Generate	
ー う History	ctdwa-864-clabs1	3.4 / 5.0		
III Data Browser	ctdwa-ccr-cdevallm1 ctdwa-ccr-ctnallm1	3.4/5.0.1		
62 Expert •	Cidwa-cr2-cgpnallm1 Cidwa-774-chs2 Cidwa-774-ch51 Cidwa-774-cb1 Cidwa-774-cb1 Cidwa-774-cb1 Version browser Haroware Version	34/5.0.1 34/5.0.1 34/5.0.1 34/5.0.1 4/5.0.1 4/5.0.1 4/5.0.1 Firmsare Version	Hadhalas Velsion Himalas Velsion 3.4 •) 50.1	•
	Hardware Version		ip-time-1.cem.ch be-co-tracing	
_	3.4	5.0		
jpalluel	3.4	5.0.1		
E Keyboard shortcuts	3.3	5.0.1	Additional details Computer Name Location Responsible Operational Support	
 Documentation 			ctdwa-774-cinm1 🛞 🚍 774/-RA14_R051=774 🖓 ACC-frontend-responsible ACC-frontend-responsible	e
Support			HCP Image Path HCP Server OS Operatic Diamon Layout MTF /white_rabb//config-H CS-CCR-FELAB.CE LINUX EMB () A Q Q	
C> Logout			Description	
<		v	waster test swi	*
0.3.23		+ Add new version	🗎 Remove switch 🗙 Discard changes 📑 Save sw	vitch

Greg Daniluk, Maciej Lipiński

Introduction

Technology Equi

Equipment

Management

Applications S

Standardisation

Ongoing Work Summary

BE-CO services: Configuration with CCDE

62			WR Nemo		Start	typing a name	C	2
	Data E		WR Nemo Servers Search Provide search otheria Basic DSL Ø Basic search Ø Q	WR Nodes WR Nemo Serv Computer Name CS-CCT-CWNemo	Responsible Ig1 Julien Pallu		T NETWORK M	10
	🔒 Hardware		Nemo Server 🔺 🗸 Responsible 🗸 🗸 Rack 🗸 Description 🗮	Building	Room	Rack		
			CONTROL WHITE RABBIT NETWORK MC	Provide search criter	ria			
	RBAC Edit		Cs-ccr-cwnemog2 Julien Palluel SERVER FOR CS-CCR-CWNEMOG2	Basic DSL	Basic search		0	Q
	FESA Edit					MAC Ad ~ IP Addr ~ Comput ~ M		
	NXCALS					02:09:11:82 192:168:5.1 cfc-774-cbt 55		e ^
	History			0		22:33:03:DF 192.168.5.1 cfc-774-cbt 55		
	 III Data Brov			0		22:33:03:6C 192:168:5.1 cfc-774-cbt 55		
				0	OASIS.TRIG	22:33:05:0E 192:168:5:1 cfv-774-cac 72	125 /	0
1	06 Expert			0	OASIS.TRIG	22:33:06:31 192.168.5.1 cfv-774-cac 72	127 /	
(B mlipin	sk						
(📰 Keyboard							
	i Documen							
	Support							
	🗈 Logout							
			Senerate DHCPD			× Delete all selected nodes		
1			Generate DHCPD			X Delete all selected nodes	+ Add new	node

Introduction	Technology	Equipment	Management	Applications	Standardisation	Ongoing Work	Summary 00
Outlin	е						

- Introduction
- 2 Technology
- 3 Equipment
- 4 Management
- 6 Applications
- 6 Standardisation
- Ongoing Work
- 8 Summary

Introduction Technology Equipment Management oco Applications Standardisation Ongoing Work Summary oc

WR applications in science and beyond

- Time & frequency transfer
- Time-based control
- Precise timestamping
- Trigger distribution
- Fixed-latency data transfer
- Radio-frequency transfer

WR applications in science and beyond

Management

Applications

00000000000

Standardisation

• Time & frequency transfer

Equipment

Time-based control

Technology

Introduction

- Precise timestamping
- Trigger distribution
- Fixed-latency data transfer
- Radio-frequency transfer

NOTE

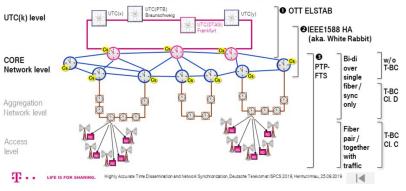
Ongoing Work

Summary

Selected WR applications at CERN will be detailed next week

Time & frequency transfer

• Widely used/evaluated by National Time Labs (5 countries)

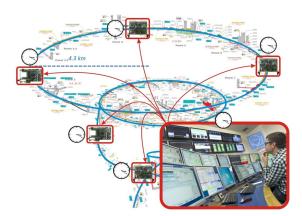


Time & frequency transfer

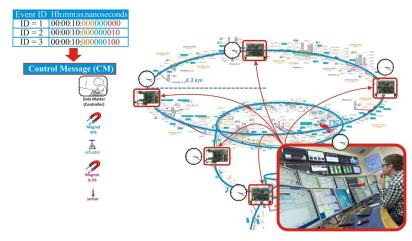
- Widely used/evaluated by National Time Labs (5 countries)
- Evaluated by Deutsche Telecom

High Accuracy Time Dissemination

4. Application of Time Transfer Methods and Network Sync Level

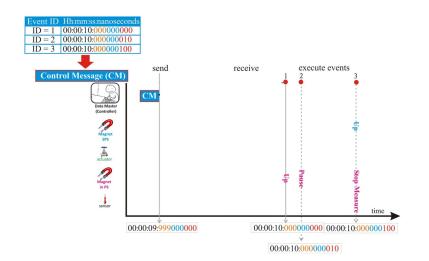


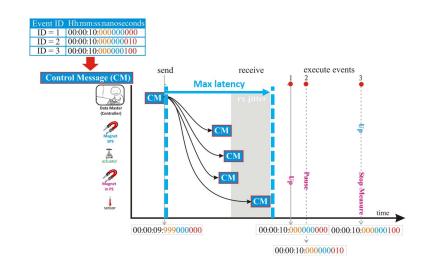
ISPCS keynote Highly Accurate Time Dissemination & Network Synchronisation, Helmut Imlau, Deutsche Telekom


Greg Daniluk, Maciej Lipiński

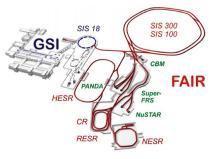
Introduction to White Rabbit

Introduction Technology Equipment Management oco Standardisation Ongoing Work Summary oco Time-based control





.



Introduction Technology Equipment Management Applications Standardisation Ongoing Work Summary 00000000000

Time-based control - example application

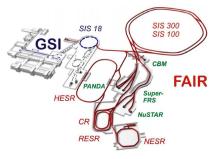
GSI Helmholtz Centre for Heavy Ion Research in Germany

Time-based control - example application

Applications

Standardisation

Management


 GSI Helmholtz Centre for Heavy Ion Research in Germany

Equipment

Introduction

Technology

1-5 ns accuracy and 10 ps precision

Ongoing Work

Summary

Time-based control - example application

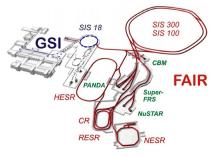
Management

Applications

00000000000

Standardisation

 GSI Helmholtz Centre for Heavy Ion Research in Germany

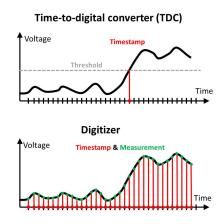

Equipment

- 1-5 ns accuracy and 10 ps precision
- WR network at GSI:

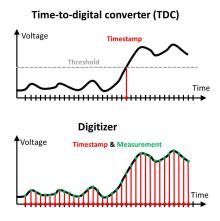
Technology

Introduction

- Operational since June 2018: 134 nodes & 32 switches
- Final: 2000 WR nodes & 300 switches in 5 layers


Ongoing Work

Summary


Association of time with

- an event
- a sample (measured value)

- Association of time with
 - an event
 - a sample (measured value)
- The most widely used WR application

Introduction	Technology	Equipment	Management	Applications		Ongoing Work	Summary 00			
Precis	Precise timestamping									

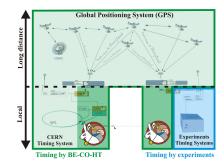
Association of time with

- an event
- a sample (measured value)

• The most widely used WR application

• Time-of-flight measurement

Introduction Technology Equipment Management oco Standardisation Ongoing Work Summary oc


Precise timestamping

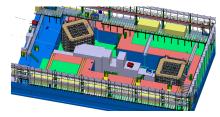
Association of time with

- an event
- a sample (measured value)

• The most widely used WR application

- Time-of-flight measurement
 - Speed of neutrinos CNGS

Introduction Technology Equipment Management OOOOOO Standardisation Ongoing Work Summary


Precise timestamping

Association of time with

- an event
- a sample (measured value)

• The most widely used WR application

- Time-of-flight measurement
 - Speed of neutrinos CNGS
 - Types of particles ProtoDUNE

Introduction	Technology	Equipment		Applications	Standardisation	Ongoing Work	Summary 00				
Precis	Precise timestamping										

Association of time with

- an event
- a sample (measured value)

• The most widely used WR application

- Time-of-flight measurement
 - Speed of neutrinos CNGS
 - Types of particles ProtoDUNE
- Cosmic ray and neutrino detection

Introduction Technology Equipment Management

Applications

Standardisation

rdisation Ongoing Work

Summary

Precise timestamping

Association of time with

- an event
- a sample (measured value)

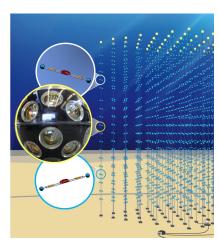
• The most widely used WR application

- Time-of-flight measurement
 - Speed of neutrinos CNGS
 - Types of particles ProtoDUNE
- Cosmic ray and neutrino detection
 - Large High Altitude Air Shower Observatory

Technology

Equipment

Management Applications 00000000000


Standardisation

Ongoing Work

Summary

Precise timestamping

- Association of time with
 - an event
 - a sample (measured value)
- The most widely used WR application
 - Time-of-flight measurement
 - Speed of neutrinos CNGS
 - Types of particles ProtoDUNE
 - Cosmic ray and neutrino detection
 - Large High Altitude Air Shower Observatory
 - Cubic Kilometre Neutrino Telescope

Introduction Technology Equipment Management

Applications

Standardisation

ation Ongoing Work

Summary 00

Precise timestamping

Association of time with

- an event
- a sample (measured value)

• The most widely used WR application

- Time-of-flight measurement
 - Speed of neutrinos CNGS
 - Types of particles ProtoDUNE
- Cosmic ray and neutrino detection
 - Large High Altitude Air Shower Observatory
 - Cubic Kilometre Neutrino Telescope
 - Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy

Introduction Technology

Equipment

Management

Applications S

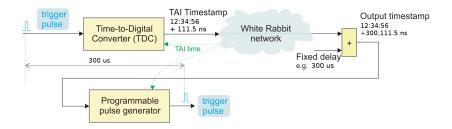
Standardisation

disation Ongoing Work

Summary 00

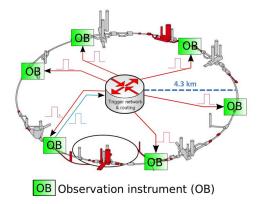
Precise timestamping

Association of time with


- an event
- a sample (measured value)

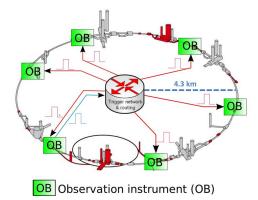
• The most widely used WR application

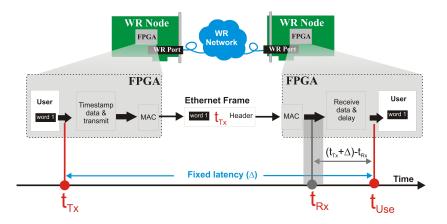
- Time-of-flight measurement
 - Speed of neutrinos CNGS
 - Types of particles ProtoDUNE
- Cosmic ray and neutrino detection
 - Large High Altitude Air Shower Observatory
 - Cubic Kilometre Neutrino Telescope
 - Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy
- High Frequency Trade monitoring
 - German Stock Exchange


Introduction Technology Equipment Management OCOCO Standardisation Ongoing Work Summary OCOCO Trigger distribution

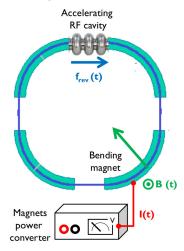
Introduction Technology Equipment Management OCON Standardisation Ongoing Work Summary

Trigger distribution - example applications

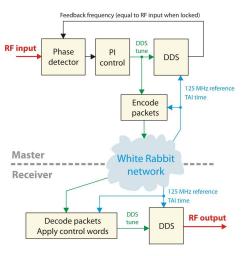

LHC trigger distribution to measure beam instabilities - since 2016


Trigger distribution - example applications

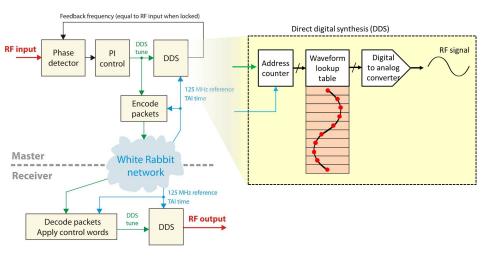
LHC trigger distribution to measure beam instabilities - since 2016


WRTD - White Rabbit Trigger Distribution- to be used for CERN's Open Analog Signals Information System (OASIS) Introduction Technology Equipment Management Applications Standardisation Ongoing Work Summary

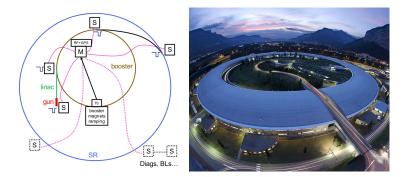
Fixed-latency data transfer



Distribution of magnetic field in CERN accelerators



Radio-frequency transfer



Radio-frequency transfer

Introduction Technology Equipment Management Applications Standardisation Ongoing Work Summary

Radio-frequency transfer - example application

- RF over WR at European Synchrotron Radiation Facility (ESRF)
 - A prototype tested in operation: <10 ps jitter</p>
- RF over WR at CERN
 - A prototype: <100 fs jitter and <10 ps reproducibility over reboots

Introduction	Technology	Equipment	Management	Applications	Standardisation	Ongoing Work	Summary 00
Outlin	e						

- Introduction
- 2 Technology
- 3 Equipment
- 4 Management
- 6 Applications
- 6 Standardisation
- Ongoing Work
- 3 Summary

 Introduction
 Technology
 Equipment
 Management
 Applications
 Standardisation
 Ongoing Work
 Summary

 WR standardisation in IEEE 1588 (1)

IEEE standards are revised periodically

Introduction Technology Equipment Management OCON Standardisation Ongoing Work Summary

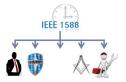
- IEEE standards are revised periodically
- IEEE 1588 revision started in 2013 & targeted "...support for synchronisation to better than 1 nanosecond"

Management

Applications

Standardisation

00


IEEE standards are revised periodically

Equipment

Introduction

Technology

- IEEE 1588 revision started in 2013 & targeted "...support for synchronisation to better than 1 nanosecond"
- Working Group with 5 sub-committees

Ongoing Work

Management

Applications

Standardisation

•0

IEEE standards are revised periodically

Equipment

- IEEE 1588 revision started in 2013 & targeted "...support for synchronisation to better than 1 nanosecond"
- Working Group with 5 sub-committees
- High Accuracy sub-committee
 - Focus on White Rabbit

Introduction

Technology

- Experts from industry and academia
- Division of WR into self-contained parts
- Definition of Optional Features and PTP Profile that allow WR-like implementation and WR performance

Ongoing Work

Management

Applications

Standardisation

00

IEEE standards are revised periodically

Equipment

- IEEE 1588 revision started in 2013 & targeted "...support for synchronisation to better than 1 nanosecond"
- Working Group with 5 sub-committees
- High Accuracy sub-committee
 - Focus on White Rabbit

Introduction

Technology

- Experts from industry and academia
- Division of WR into self-contained parts
- Definition of Optional Features and PTP Profile that allow WR-like implementation and WR performance

Ongoing Work

Management

Applications

Standardisation

00

IEEE standards are revised periodically

Equipment

- IEEE 1588 revision started in 2013 & targeted "...support for synchronisation to better than 1 nanosecond"
- Working Group with 5 sub-committees
- High Accuracy sub-committee
 - Focus on White Rabbit

Introduction

Technology

- Experts from industry and academia
- Division of WR into self-contained parts
- Definition of Optional Features and PTP Profile that allow WR-like implementation and WR performance
- Revised IEEE 1588 approved on 7 Nov 2019

Ongoing Work

Introduction

Technology Equipment

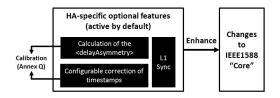
Management

Applications S

Standardisation

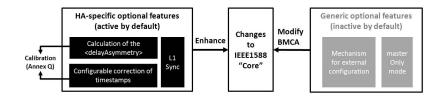
Ongoing Work o Summary 00

WR standardisation in IEEE 1588 (2)


White Rabbit integration into IEEE 1588 as High Accuracy: https://www.ohwr.org/projects/wr-std/wiki/wrin1588 Introduction Technology Equipment Management Operations Standardisation Ongoing Work Summary Operations Standardisation in IEEE 1588 (2)

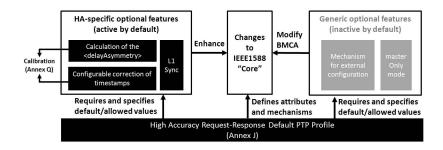
White Rabbit integration into IEEE 1588 as High Accuracy:

Introduction Technology Equipment Management Applications Standardisation Ongoing Work Summary oo

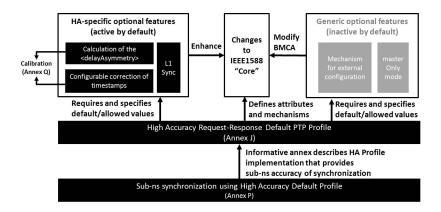

WR standardisation in IEEE 1588 (2)

White Rabbit integration into IEEE 1588 as High Accuracy:

Introduction Technology Equipment Management Applications Standardisation Ongoing Work Summary oo


WR standardisation in IEEE 1588 (2)

White Rabbit integration into IEEE 1588 as High Accuracy:


Introduction Technology Equipment Management Applications Standardisation Ongoing Work Summary of

WR standardisation in IEEE 1588 (2)

White Rabbit integration into IEEE 1588 as High Accuracy:

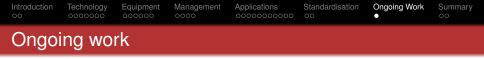
WR standardisation in IEEE 1588 (2)

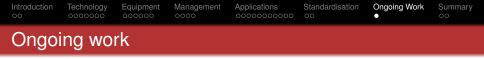

White Rabbit integration into IEEE 1588 as High Accuracy:

https://www.ohwr.org/projects/wr-std/wiki/wrin1588


Greg Daniluk, Maciej Lipiński Introduction to White Rabbit

Introduction	Technology	Equipment	Management	Applications	Standardisation	Ongoing Work ○	Summary 00
Outlin	е						

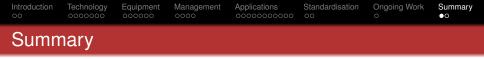

- Introduction
- 2 Technology
- 3 Equipment
- 4 Management
- 6 Applications
- 6 Standardisation
- Ongoing Work
 - B) Summary


• Improve accuracy (<10 ps) and jitter (<100 fs)


- Improve accuracy (<10 ps) and jitter (<100 fs)
- White Rabbit over 10 Gb Ethernet

- Improve accuracy (<10 ps) and jitter (<100 fs)
- White Rabbit over 10 Gb Ethernet
- New WR Switch hardware

- Improve accuracy (<10 ps) and jitter (<100 fs)
- White Rabbit over 10 Gb Ethernet
- New WR Switch hardware
- WR PTP Core support for new FPGA families


- Improve accuracy (<10 ps) and jitter (<100 fs)
- White Rabbit over 10 Gb Ethernet
- New WR Switch hardware
- WR PTP Core support for new FPGA families
- Support for building WR applications (next week BE seminar)

Introduction	Technology	Equipment	Management	Applications	Standardisation	Ongoing Work	Summary 00	
Outlin	е							

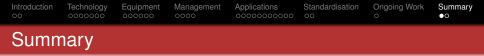

- Introduction
- 2 Technology
- 3 Equipment
- 4 Management
- 6 Applications
- 6 Standardisation
- Ongoing Work
- 8 Summary

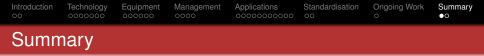
Introduction	Technology	Equipment	Management	Applications	Standardisation	Ongoing Work o	Summary ●○
Summ	nary						


Ethernet-based synchronization

- Ethernet-based synchronization
- <1 ns accuracy and <10 ps precision out-of-the-box

- Ethernet-based synchronization
- <1 ns accuracy and <10 ps precision out-of-the-box
- Sub-10 ps accuracy and sub-100 fs precision achievable


- Ethernet-based synchronization
- I ns accuracy and <10 ps precision out-of-the-box</p>
- Sub-10 ps accuracy and sub-100 fs precision achievable
- Open with commercial support


- Ethernet-based synchronization
- I ns accuracy and <10 ps precision out-of-the-box</p>
- Sub-10 ps accuracy and sub-100 fs precision achievable
- Open with commercial support
- Standard-based and standard-extending

- Ethernet-based synchronization
- <1 ns accuracy and <10 ps precision out-of-the-box
- Sub-10 ps accuracy and sub-100 fs precision achievable
- Open with commercial support
- Standard-based and standard-extending
- Included in the revised IEEE 1588

- Ethernet-based synchronization
- I ns accuracy and <10 ps precision out-of-the-box</p>
- Sub-10 ps accuracy and sub-100 fs precision achievable
- Open with commercial support
- Standard-based and standard-extending
- Included in the revised IEEE 1588
- A versatile solution for general control and data acquisition

- Ethernet-based synchronization
- <1 ns accuracy and <10 ps precision out-of-the-box
- Sub-10 ps accuracy and sub-100 fs precision achievable
- Open with commercial support
- Standard-based and standard-extending
- Included in the revised IEEE 1588
- A versatile solution for general control and data acquisition
- Showcase of technology transfer

Introduction	Technology	Equipment	Management	Applications	Ongoing Work	Summary ○●	
084							

Questions?

WR Project page: http://www.ohwr.org/projects/white-rabbit/wiki

WR Performance in Long Chain o	WR Performance Improvements	WR networks at CERN O	Determinism in WR
Backup slides			

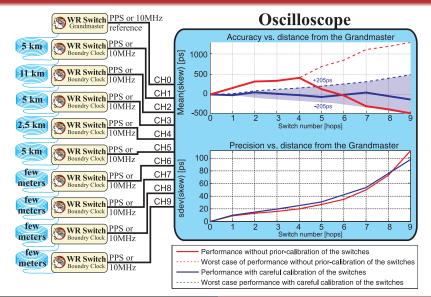
Backup slides

WR Performance	in Long Chain	

WR networks at CERN

Determinism in WR

Outline

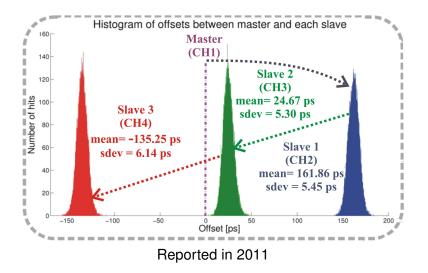

10 WR Performance Improvements

WR networks at CERN o Determinism in WR

WR performance in a long chain

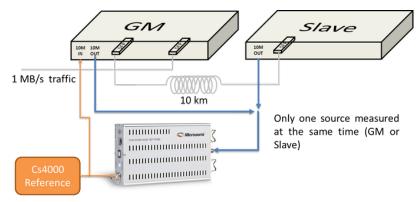
WR networks at CERN o Determinism in WR

Outline


WR Performance in Long Chain \circ

WR Performance Improvements

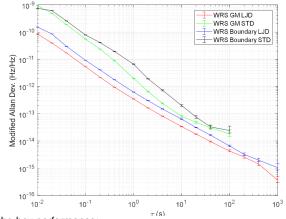
WR networks at CERN


Determinism in WR

Time transfer: out-of-the-box

WR Performance in Long Chain o	WR Performance Improvements	WR networks at CERN $^{\circ}$	Determinism in WR

Frequency transfer: out-of-the-box and improved

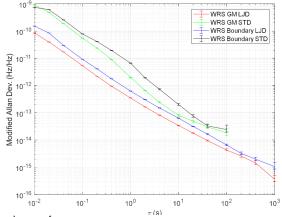


Measurement device: Microsemi/Microchip 3120A Phase Noise Test Probe

WR networks at CERN

Determinism in WR

Frequency transfer: out-of-the-box and improved

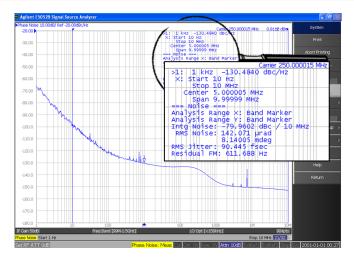


- Out-of-the-box performance:
 - GM-in to GM-out: jitter of 9 ps RMS 1 Hz–100 kHz and MDEV of 2E-12 τ =1 s ENBW 50 Hz
 - GM-in to Slave-out: jitter of 11 ps RMS 1 Hz–100 kHz and MDEV of 4E-12 τ=1 s ENBW 50 Hz

WR networks at CERN

Determinism in WR

Frequency transfer: out-of-the-box and improved



- Out-of-the-box performance:
 - GM-in to GM-out: jitter of 9 ps RMS 1 Hz–100 kHz and MDEV of 2E-12 T=1 s ENBW 50 Hz
 - GM-in to Slave-out: jitter of 11 ps RMS 1 Hz–100 kHz and MDEV of 4E-12 τ=1 s ENBW 50 Hz
- WR Switches improved with Low Jitter Daughterboard (LJD):
 - GM-in to GM-out: jitter of 1 ps RMS 1 Hz-100 kHz and MDEV of <5E-13 τ=1 s ENBW 50 Hz</p>
 - **GM-in to Slave-out**: jitter of <**2 ps** RMS 1 Hz–100 kHz and MDEV of <**7E-13** τ =1 s ENBW 50 Hz

WR networks at CERN

Determinism in WR

WR time & frequency tranfser: state of the art

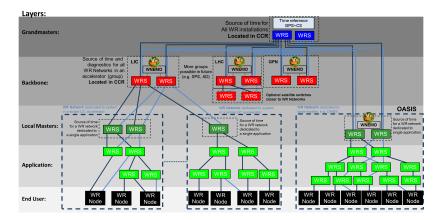
- GM-out to end-node-out: accuracy of <10 ps
- GM-out to end-node-out: jitter of <100 fs RMS 10 Hz-10 MHz

WR networks at CERN

Determinism in WR

Outline

WR Performance Improvements



WR networks at CERN

Determinism in WR

Global WR network at CERN

WR Switch

Active fiber Ethernet link

Backup fiber Ethernet link

Copper Ethernet link

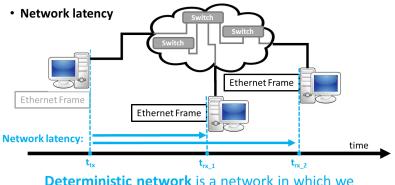
Greg Daniluk, Maciej Lipiński

Introduction to White Rabbit

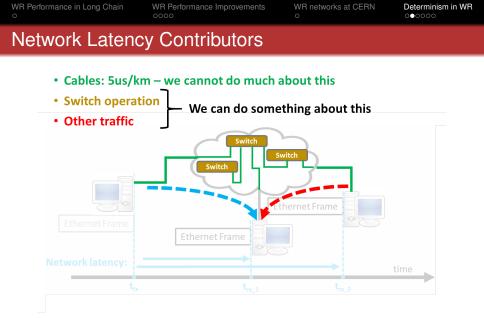
WR networks at CERN o Determinism in WR

Outline

WR Performance Improvements



WR networks at CERN o Determinism in WR ●○○○○○


Determinism and Network Latency

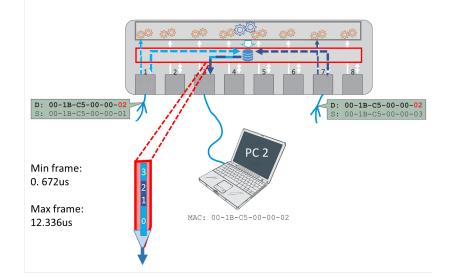
• Determinism

A deterministic system is predictable: it provides calculable and consistent characteristics of operation that are required by the application, e.g. **network latency** of data transmission.

can calculate the maximum latency

WR Performance in Long Chain	WR Performance Improvements	WR networks at CERN	Determinism in WR				
o		o	○○●○○○				
Determinism in WR							

- "White Box" design of WR switch allows thorough analysis
- Backward-compatible extension of the IEEE 802.1Q std

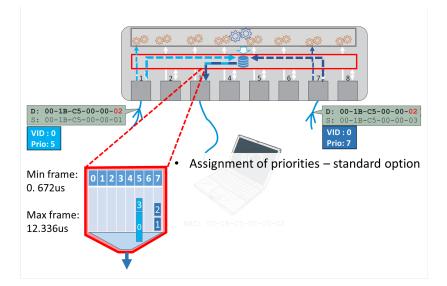

WR Performance in Long Chain $_{\rm O}$

WR Performance Improvements

WR networks at CERN

Determinism in WR

Priorities

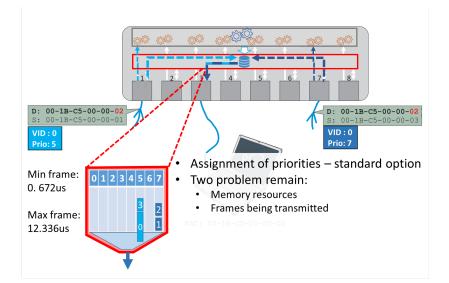


WR	Performance	Long	Chain	

WR networks at CERN

Determinism in WR

Priorities

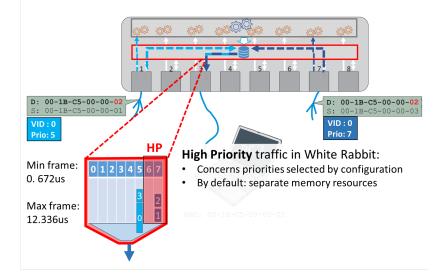


WR	Performance	Long	Chain

WR networks at CERN

Determinism in WR

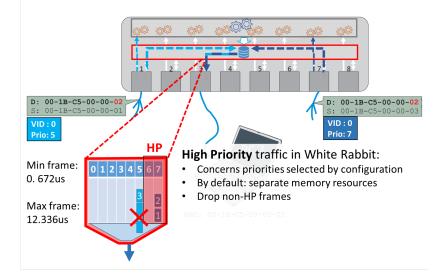
Priorities


WR Performance in Long Chain o

WR Performance Improvements

WR networks at CERN

Determinism in WR


High Priority

WR networks at CERN

Determinism in WR

High Priority

--- P17 -> P11

bytes

Determinism in WR 000000

WR Switch Latency

	Center			Latend	รงโมรไ	
Fiber (5m)		Intervening traffic	One switch		Two switches	
0 1121314 516171819101	1213141151617	traffic	Max	Pk-pk	Max	Pk-pk
Deterministic stream		No	3.1	0.3	5.8	0.5
Best effort	·>	WR-PTP	5.6	2.8	8.7	3.9
stream Best effort	▶	Non-HP traffic	3.1	0.2	N/A	N/A
stream		cy for 10 streams between 4	ports			
1000		(no PTP traffic)	-	P0 -> P11 (deterministic))	
		1		P5 -> P0 P5 -> P11		
100 E	1		1	P5 -> P17 P11 -> P0		
[ratency [us]	$-/\Gamma$	N	2/1	P11 -> P5 P11 -> P17		
		/	P17 -> P0			
3.04 3.04 3.05 3.04 3 2.88 2.89 3.04 3.04 2.9 2.88						

50

256 512

10 20 30 40 50

128

10 20 30 40 50 %

1024